Cargando…
A Bayesian Downscaler Model to Estimate Daily PM(2.5) Levels in the Conterminous US
There has been growing interest in extending the coverage of ground particulate matter with aerodynamic diameter ≤ 2.5 μm (PM(2.5)) monitoring networks based on satellite remote sensing data. With broad spatial and temporal coverage, a satellite-based monitoring network has a strong potential to com...
Autores principales: | Wang, Yikai, Hu, Xuefei, Chang, Howard H., Waller, Lance A., Belle, Jessica H., Liu, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164266/ https://www.ncbi.nlm.nih.gov/pubmed/30217060 http://dx.doi.org/10.3390/ijerph15091999 |
Ejemplares similares
-
Application of Bayesian Additive Regression Trees for Estimating Daily Concentrations of PM(2.5) Components
por: Zhang, Tianyu, et al.
Publicado: (2020) -
The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM(2.5) Mass and Composition
por: Belle, Jessica H., et al.
Publicado: (2017) -
Incorporation of Remote PM(2.5) Concentrations into the Downscaler Model for Spatially Fused Air Quality Surfaces
por: Gantt, Brett, et al.
Publicado: (2020) -
NASA Global Daily Downscaled Projections, CMIP6
por: Thrasher, Bridget, et al.
Publicado: (2022) -
Dataset of monthly downscaled future vapor pressure projections for the conterminous USA for RCP 4.5 and RCP 8.5 compatible with NEX-DCP30
por: Drapek, Raymond J., et al.
Publicado: (2023)