Cargando…
Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms
Wearable sensors for human physiological monitoring have attracted tremendous interest from researchers in recent years. However, most of the research involved simple trials without any significant analytical algorithms. This study provides a way of recognizing human motion by combining textile stre...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164335/ https://www.ncbi.nlm.nih.gov/pubmed/30223535 http://dx.doi.org/10.3390/s18093109 |
_version_ | 1783359575420829696 |
---|---|
author | Vu, Chi Cuong Kim, Jooyong |
author_facet | Vu, Chi Cuong Kim, Jooyong |
author_sort | Vu, Chi Cuong |
collection | PubMed |
description | Wearable sensors for human physiological monitoring have attracted tremendous interest from researchers in recent years. However, most of the research involved simple trials without any significant analytical algorithms. This study provides a way of recognizing human motion by combining textile stretch sensors based on single-walled carbon nanotubes (SWCNTs) and spandex fabric (PET/SP) and machine learning algorithms in a realistic application. In the study, the performance of the system will be evaluated by identification rate and accuracy of the motion standardized. This research aims to provide a realistic motion sensing wearable product without unnecessary heavy and uncomfortable electronic devices. |
format | Online Article Text |
id | pubmed-6164335 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61643352018-10-10 Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms Vu, Chi Cuong Kim, Jooyong Sensors (Basel) Article Wearable sensors for human physiological monitoring have attracted tremendous interest from researchers in recent years. However, most of the research involved simple trials without any significant analytical algorithms. This study provides a way of recognizing human motion by combining textile stretch sensors based on single-walled carbon nanotubes (SWCNTs) and spandex fabric (PET/SP) and machine learning algorithms in a realistic application. In the study, the performance of the system will be evaluated by identification rate and accuracy of the motion standardized. This research aims to provide a realistic motion sensing wearable product without unnecessary heavy and uncomfortable electronic devices. MDPI 2018-09-14 /pmc/articles/PMC6164335/ /pubmed/30223535 http://dx.doi.org/10.3390/s18093109 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vu, Chi Cuong Kim, Jooyong Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms |
title | Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms |
title_full | Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms |
title_fullStr | Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms |
title_full_unstemmed | Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms |
title_short | Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms |
title_sort | human motion recognition by textile sensors based on machine learning algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164335/ https://www.ncbi.nlm.nih.gov/pubmed/30223535 http://dx.doi.org/10.3390/s18093109 |
work_keys_str_mv | AT vuchicuong humanmotionrecognitionbytextilesensorsbasedonmachinelearningalgorithms AT kimjooyong humanmotionrecognitionbytextilesensorsbasedonmachinelearningalgorithms |