Cargando…
Human Motion Recognition by Textile Sensors Based on Machine Learning Algorithms
Wearable sensors for human physiological monitoring have attracted tremendous interest from researchers in recent years. However, most of the research involved simple trials without any significant analytical algorithms. This study provides a way of recognizing human motion by combining textile stre...
Autores principales: | Vu, Chi Cuong, Kim, Jooyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164335/ https://www.ncbi.nlm.nih.gov/pubmed/30223535 http://dx.doi.org/10.3390/s18093109 |
Ejemplares similares
-
Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring
por: Vu, Chi Cuong, et al.
Publicado: (2020) -
Effects of Fe Staple-Fiber Spun-Yarns and Correlation Models on Textile Pressure Sensors
por: Choi, Minki, et al.
Publicado: (2022) -
Classification of Breathing Signals According to Human Motions by Combining 1D Convolutional Neural Network and Embroidered Textile Sensor
por: Kim, Jiseon, et al.
Publicado: (2023) -
Flexible Pressure Sensors and Machine Learning Algorithms for Human Walking Phase Monitoring
por: Nguyen, Thanh-Hai, et al.
Publicado: (2023) -
Waterproof, thin, high-performance pressure sensors-hand drawing for underwater wearable applications
por: Vu, Chi Cuong, et al.
Publicado: (2021)