Cargando…
Generative vs. Discriminative Recognition Models for Off-Line Arabic Handwriting
The majority of handwritten word recognition strategies are constructed on learning-based generative frameworks from letter or word training samples. Theoretically, constructing recognition models through discriminative learning should be the more effective alternative. The primary goal of this rese...
Autores principales: | Elzobi, Moftah, Al-Hamadi, Ayoub |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164492/ https://www.ncbi.nlm.nih.gov/pubmed/30149549 http://dx.doi.org/10.3390/s18092786 |
Ejemplares similares
-
Synthesis of Common Arabic Handwritings to Aid Optical Character Recognition Research
por: Dinges, Laslo, et al.
Publicado: (2016) -
ASM Based Synthesis of Handwritten Arabic Text Pages
por: Dinges, Laslo, et al.
Publicado: (2015) -
Deep Learning-Based Child Handwritten Arabic Character Recognition and Handwriting Discrimination
por: Alwagdani, Maram Saleh, et al.
Publicado: (2023) -
Markov Models for Handwriting Recognition
por: Plotz, Thomas, et al.
Publicado: (2011) -
Recognition of Handwriting from Electromyography
por: Linderman, Michael, et al.
Publicado: (2009)