Cargando…
A Time-Distributed Spatiotemporal Feature Learning Method for Machine Health Monitoring with Multi-Sensor Time Series
Data-driven methods with multi-sensor time series data are the most promising approaches for monitoring machine health. Extracting fault-sensitive features from multi-sensor time series is a daunting task for both traditional data-driven methods and current deep learning models. A novel hybrid end-t...
Autores principales: | Qiao, Huihui, Wang, Taiyong, Wang, Peng, Qiao, Shibin, Zhang, Lan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164508/ https://www.ncbi.nlm.nih.gov/pubmed/30177670 http://dx.doi.org/10.3390/s18092932 |
Ejemplares similares
-
Time Series Anomaly Detection Model Based on Multi-Features
por: Tang, Hengyao, et al.
Publicado: (2022) -
Spatiotemporal Transformer Neural Network for Time-Series Forecasting
por: You, Yujie, et al.
Publicado: (2022) -
Multi-Sensor Fault Diagnosis Based on Time Series in an Intelligent Mechanical System
por: Xu, Zhuoran, et al.
Publicado: (2022) -
Estimating Biomechanical Time-Series with Wearable Sensors: A Systematic Review of Machine Learning Techniques
por: Gurchiek, Reed D., et al.
Publicado: (2019) -
Time Series Data Prediction and Feature Analysis of Sports Dance Movements Based on Machine Learning
por: Zheng, DongXia, et al.
Publicado: (2022)