Cargando…
Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll a, Diatoms, Green Algae and Turbidity
Inland waters are of great importance for scientists as well as authorities since they are essential ecosystems and well known for their biodiversity. When monitoring their respective water quality, in situ measurements of water quality parameters are spatially limited, costly and time-consuming. In...
Autores principales: | Keller, Sina, Maier, Philipp M., Riese, Felix M., Norra, Stefan, Holbach, Andreas, Börsig, Nicolas, Wilhelms, Andre, Moldaenke, Christian, Zaake, André, Hinz, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164519/ https://www.ncbi.nlm.nih.gov/pubmed/30200256 http://dx.doi.org/10.3390/ijerph15091881 |
Ejemplares similares
-
Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean
por: Aurin, Dirk, et al.
Publicado: (2018) -
Comparison of Two Water Color Algorithms: Implications for the Remote Sensing of Water Bodies with Moderate to High CDOM or Chlorophyll Levels
por: Burket, Martha Otte, et al.
Publicado: (2023) -
Diurnal Variability in Chlorophyll-a, Carotenoids, CDOM and SO(4)(2−) Intensity of Offshore Seawater Detected by an Underwater Fluorescence-Raman Spectral System
por: Chen, Jing, et al.
Publicado: (2016) -
Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids
por: Wu, Jiunn-Lin, et al.
Publicado: (2014) -
Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll-a and turbidity algorithms
por: Warren, Mark A., et al.
Publicado: (2021)