Cargando…
Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System
In this paper, based on coupled hetero-cavities, multiple Fano resonances are produced and tuned in a plasmonic metal-insulator-metal (MIM) system. The structure comprises a rectangular cavity, a side-coupled waveguide, and an upper-coupled circular cavity with a metal-strip core, used to modulate F...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164532/ https://www.ncbi.nlm.nih.gov/pubmed/30201870 http://dx.doi.org/10.3390/ma11091675 |
_version_ | 1783359622511329280 |
---|---|
author | Wang, Qiong Ouyang, Zhengbiao Lin, Mi Liu, Qiang |
author_facet | Wang, Qiong Ouyang, Zhengbiao Lin, Mi Liu, Qiang |
author_sort | Wang, Qiong |
collection | PubMed |
description | In this paper, based on coupled hetero-cavities, multiple Fano resonances are produced and tuned in a plasmonic metal-insulator-metal (MIM) system. The structure comprises a rectangular cavity, a side-coupled waveguide, and an upper-coupled circular cavity with a metal-strip core, used to modulate Fano resonances. Three Fano resonances can be realized, which originate from interference of the cavity modes between the rectangular cavity and the metal-strip-core circular cavity. Due to the different cavity-cavity coupling mechanisms, the three Fano resonances can be divided into two groups, and each group of Fano resonances can be well tuned independently by changing the different cavity parameters, which can allow great flexibility to control multiple Fano resonances in practice. Furthermore, through carefully adjusting the direction angle of the metal-strip core in the circular cavity, the position and lineshape of the Fano resonances can be easily tuned. Notably, reversal asymmetry takes place for one of the Fano resonances. The influence of the direction angle on the figure of merit (FOM) value is also investigated. A maximum FOM of 3436 is obtained. The proposed structure has high transmission, sharp Fano lineshape, and high sensitivity to change in the background refractive index. This research provides effective guidance to tune multiple Fano resonances, which has important applications in nanosensors, filters, modulators, and other related plasmonic devices. |
format | Online Article Text |
id | pubmed-6164532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61645322018-10-12 Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System Wang, Qiong Ouyang, Zhengbiao Lin, Mi Liu, Qiang Materials (Basel) Article In this paper, based on coupled hetero-cavities, multiple Fano resonances are produced and tuned in a plasmonic metal-insulator-metal (MIM) system. The structure comprises a rectangular cavity, a side-coupled waveguide, and an upper-coupled circular cavity with a metal-strip core, used to modulate Fano resonances. Three Fano resonances can be realized, which originate from interference of the cavity modes between the rectangular cavity and the metal-strip-core circular cavity. Due to the different cavity-cavity coupling mechanisms, the three Fano resonances can be divided into two groups, and each group of Fano resonances can be well tuned independently by changing the different cavity parameters, which can allow great flexibility to control multiple Fano resonances in practice. Furthermore, through carefully adjusting the direction angle of the metal-strip core in the circular cavity, the position and lineshape of the Fano resonances can be easily tuned. Notably, reversal asymmetry takes place for one of the Fano resonances. The influence of the direction angle on the figure of merit (FOM) value is also investigated. A maximum FOM of 3436 is obtained. The proposed structure has high transmission, sharp Fano lineshape, and high sensitivity to change in the background refractive index. This research provides effective guidance to tune multiple Fano resonances, which has important applications in nanosensors, filters, modulators, and other related plasmonic devices. MDPI 2018-09-10 /pmc/articles/PMC6164532/ /pubmed/30201870 http://dx.doi.org/10.3390/ma11091675 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Qiong Ouyang, Zhengbiao Lin, Mi Liu, Qiang Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System |
title | Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System |
title_full | Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System |
title_fullStr | Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System |
title_full_unstemmed | Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System |
title_short | Independently Tunable Fano Resonances Based on the Coupled Hetero-Cavities in a Plasmonic MIM System |
title_sort | independently tunable fano resonances based on the coupled hetero-cavities in a plasmonic mim system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164532/ https://www.ncbi.nlm.nih.gov/pubmed/30201870 http://dx.doi.org/10.3390/ma11091675 |
work_keys_str_mv | AT wangqiong independentlytunablefanoresonancesbasedonthecoupledheterocavitiesinaplasmonicmimsystem AT ouyangzhengbiao independentlytunablefanoresonancesbasedonthecoupledheterocavitiesinaplasmonicmimsystem AT linmi independentlytunablefanoresonancesbasedonthecoupledheterocavitiesinaplasmonicmimsystem AT liuqiang independentlytunablefanoresonancesbasedonthecoupledheterocavitiesinaplasmonicmimsystem |