Cargando…

On the Effects of InSAR Temporal Decorrelation and Its Implications for Land Cover Classification: The Case of the Ocean-Reclaimed Lands of the Shanghai Megacity

In this work, we focused on the ocean-reclaimed lands of the Shanghai coastal region and we evidenced how, over these areas, the interferometric synthetic aperture radar (InSAR) coherence maps exhibit peculiar behavior. In particular, by analyzing a sequence of Sentinel-1 SAR InSAR coherence maps, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Guanyu, Zhao, Qing, Wang, Qiang, Liu, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164590/
https://www.ncbi.nlm.nih.gov/pubmed/30181487
http://dx.doi.org/10.3390/s18092939
Descripción
Sumario:In this work, we focused on the ocean-reclaimed lands of the Shanghai coastal region and we evidenced how, over these areas, the interferometric synthetic aperture radar (InSAR) coherence maps exhibit peculiar behavior. In particular, by analyzing a sequence of Sentinel-1 SAR InSAR coherence maps, we found a significant coherence loss over time in correspondence to the ocean-reclaimed platforms that are substantially different from the coherence loss experienced in naturally-formed regions with the same type of land cover. We have verified whether this is due to the engineering geological conditions or the soil consolidation subsidence in ocean-reclaimed region. In this work, we combine the information coming from InSAR coherence maps and the retrieved temporal decorrelation model with that obtained by using optical Sentinel-2 data, and we performed land cover classification analyses in the zone of the Pudong International Airport. To estimate the accuracy of utilizing InSAR coherence information for land cover classification, in particular, we have analyzed what causes the difference of the InSAR coherence loss with the same type of land cover. The presented results show that the coherence models can be useful to distinguish roads and buildings, thus enhancing the accuracy of land cover classification compared with that allowable by using only Sentinel-2 data. In particular, the accuracy of classification increases from 75% to 86%.