Cargando…
Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration
Both the free chloride concentration and the pH of the concrete pore solution are highly relevant parameters that control corrosion of the reinforcing steel. In this paper, we present a method to continuously monitor these two parameters in-situ. The approach is based on a recently developed electro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164804/ https://www.ncbi.nlm.nih.gov/pubmed/30223507 http://dx.doi.org/10.3390/s18093101 |
_version_ | 1783359687571275776 |
---|---|
author | Femenias, Yurena Seguí Angst, Ueli Moro, Fabrizio Elsener, Bernhard |
author_facet | Femenias, Yurena Seguí Angst, Ueli Moro, Fabrizio Elsener, Bernhard |
author_sort | Femenias, Yurena Seguí |
collection | PubMed |
description | Both the free chloride concentration and the pH of the concrete pore solution are highly relevant parameters that control corrosion of the reinforcing steel. In this paper, we present a method to continuously monitor these two parameters in-situ. The approach is based on a recently developed electrode system that consists of several different potentiometric sensors as well as a data interpretation procedure. Instrumented mortar specimens containing different amounts of admixed chlorides were exposed to accelerated carbonation, and changes in free chloride concentration and pH were monitored simultaneously over time. The results revealed the stepwise decrease in pH as well as corresponding increases in free chlorides, resulting from the release of bound chlorides. For a pH drop of about 1 unit (from pH 13.5 down to pH 12.5), the free chloride concentration increased up to 1.5-fold. We continuously quantified the ratio Cl(−)/OH(−) that increased steeply with time, and was found to exceed a critical corrosion threshold long before carbonation can be detected with traditional indicator spray testing, even at admixed chloride contents in the order of allowable limits. These results can strongly influence the decision-making in engineering practice and it is expected to significantly improve condition assessments of reinforced concrete structures. |
format | Online Article Text |
id | pubmed-6164804 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61648042018-10-10 Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration Femenias, Yurena Seguí Angst, Ueli Moro, Fabrizio Elsener, Bernhard Sensors (Basel) Article Both the free chloride concentration and the pH of the concrete pore solution are highly relevant parameters that control corrosion of the reinforcing steel. In this paper, we present a method to continuously monitor these two parameters in-situ. The approach is based on a recently developed electrode system that consists of several different potentiometric sensors as well as a data interpretation procedure. Instrumented mortar specimens containing different amounts of admixed chlorides were exposed to accelerated carbonation, and changes in free chloride concentration and pH were monitored simultaneously over time. The results revealed the stepwise decrease in pH as well as corresponding increases in free chlorides, resulting from the release of bound chlorides. For a pH drop of about 1 unit (from pH 13.5 down to pH 12.5), the free chloride concentration increased up to 1.5-fold. We continuously quantified the ratio Cl(−)/OH(−) that increased steeply with time, and was found to exceed a critical corrosion threshold long before carbonation can be detected with traditional indicator spray testing, even at admixed chloride contents in the order of allowable limits. These results can strongly influence the decision-making in engineering practice and it is expected to significantly improve condition assessments of reinforced concrete structures. MDPI 2018-09-14 /pmc/articles/PMC6164804/ /pubmed/30223507 http://dx.doi.org/10.3390/s18093101 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Femenias, Yurena Seguí Angst, Ueli Moro, Fabrizio Elsener, Bernhard Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration |
title | Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration |
title_full | Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration |
title_fullStr | Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration |
title_full_unstemmed | Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration |
title_short | Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration |
title_sort | development of a novel methodology to assess the corrosion threshold in concrete based on simultaneous monitoring of ph and free chloride concentration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164804/ https://www.ncbi.nlm.nih.gov/pubmed/30223507 http://dx.doi.org/10.3390/s18093101 |
work_keys_str_mv | AT femeniasyurenasegui developmentofanovelmethodologytoassessthecorrosionthresholdinconcretebasedonsimultaneousmonitoringofphandfreechlorideconcentration AT angstueli developmentofanovelmethodologytoassessthecorrosionthresholdinconcretebasedonsimultaneousmonitoringofphandfreechlorideconcentration AT morofabrizio developmentofanovelmethodologytoassessthecorrosionthresholdinconcretebasedonsimultaneousmonitoringofphandfreechlorideconcentration AT elsenerbernhard developmentofanovelmethodologytoassessthecorrosionthresholdinconcretebasedonsimultaneousmonitoringofphandfreechlorideconcentration |