Cargando…

Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules

The design of phase-change material (PCM)-based thermal energy storage (TES) systems is challenging since a lot of PCMs have low thermal conductivities and a considerable volume change during phase-change. The low thermal conductivity restricts energy transport due to the increasing thermal resistan...

Descripción completa

Detalles Bibliográficos
Autores principales: Höhlein, Stephan, König-Haagen, Andreas, Brüggemann, Dieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164848/
https://www.ncbi.nlm.nih.gov/pubmed/30227668
http://dx.doi.org/10.3390/ma11091752
_version_ 1783359697809571840
author Höhlein, Stephan
König-Haagen, Andreas
Brüggemann, Dieter
author_facet Höhlein, Stephan
König-Haagen, Andreas
Brüggemann, Dieter
author_sort Höhlein, Stephan
collection PubMed
description The design of phase-change material (PCM)-based thermal energy storage (TES) systems is challenging since a lot of PCMs have low thermal conductivities and a considerable volume change during phase-change. The low thermal conductivity restricts energy transport due to the increasing thermal resistance of the progressing phase boundary and hence large heat transfer areas or temperature differences are required to achieve sufficient storage power. An additional volume has to be considered in the storage system to compensate for volume change. Macro-encapsulation of the PCM is one method to overcome these drawbacks. When designed as stiff containers with an air cushion, the macro-capsules compensate for volume change of the PCM which facilitates the design of PCM storage systems. The capsule walls provide a large surface for heat transfer and the thermal resistance is reduced due to the limited thickness of the capsules. Although the principles and advantages of macro-encapsulation have been well known for many years, no detailed analysis of the whole encapsulation process has been published yet. Therefore, this research proposes a detailed development strategy for the whole encapsulation process. Various possibilities for corrosion protection, fill and seal strategies and capsule geometries are studied. The proposed workflow is applied for the encapsulation of the salt hydrate magnesiumchloride hexahydrate (MCHH, MgCl [Formula: see text] H [Formula: see text] O) within metal capsules but can also be assigned to other material combinations.
format Online
Article
Text
id pubmed-6164848
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61648482018-10-12 Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules Höhlein, Stephan König-Haagen, Andreas Brüggemann, Dieter Materials (Basel) Article The design of phase-change material (PCM)-based thermal energy storage (TES) systems is challenging since a lot of PCMs have low thermal conductivities and a considerable volume change during phase-change. The low thermal conductivity restricts energy transport due to the increasing thermal resistance of the progressing phase boundary and hence large heat transfer areas or temperature differences are required to achieve sufficient storage power. An additional volume has to be considered in the storage system to compensate for volume change. Macro-encapsulation of the PCM is one method to overcome these drawbacks. When designed as stiff containers with an air cushion, the macro-capsules compensate for volume change of the PCM which facilitates the design of PCM storage systems. The capsule walls provide a large surface for heat transfer and the thermal resistance is reduced due to the limited thickness of the capsules. Although the principles and advantages of macro-encapsulation have been well known for many years, no detailed analysis of the whole encapsulation process has been published yet. Therefore, this research proposes a detailed development strategy for the whole encapsulation process. Various possibilities for corrosion protection, fill and seal strategies and capsule geometries are studied. The proposed workflow is applied for the encapsulation of the salt hydrate magnesiumchloride hexahydrate (MCHH, MgCl [Formula: see text] H [Formula: see text] O) within metal capsules but can also be assigned to other material combinations. MDPI 2018-09-17 /pmc/articles/PMC6164848/ /pubmed/30227668 http://dx.doi.org/10.3390/ma11091752 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Höhlein, Stephan
König-Haagen, Andreas
Brüggemann, Dieter
Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules
title Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules
title_full Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules
title_fullStr Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules
title_full_unstemmed Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules
title_short Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules
title_sort macro-encapsulation of inorganic phase-change materials (pcm) in metal capsules
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164848/
https://www.ncbi.nlm.nih.gov/pubmed/30227668
http://dx.doi.org/10.3390/ma11091752
work_keys_str_mv AT hohleinstephan macroencapsulationofinorganicphasechangematerialspcminmetalcapsules
AT konighaagenandreas macroencapsulationofinorganicphasechangematerialspcminmetalcapsules
AT bruggemanndieter macroencapsulationofinorganicphasechangematerialspcminmetalcapsules