Cargando…
Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model
Women’s breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preser...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164870/ https://www.ncbi.nlm.nih.gov/pubmed/30149621 http://dx.doi.org/10.3390/s18092799 |
_version_ | 1783359703101734912 |
---|---|
author | Mambou, Sebastien Jean Maresova, Petra Krejcar, Ondrej Selamat, Ali Kuca, Kamil |
author_facet | Mambou, Sebastien Jean Maresova, Petra Krejcar, Ondrej Selamat, Ali Kuca, Kamil |
author_sort | Mambou, Sebastien Jean |
collection | PubMed |
description | Women’s breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models. |
format | Online Article Text |
id | pubmed-6164870 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61648702018-10-10 Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model Mambou, Sebastien Jean Maresova, Petra Krejcar, Ondrej Selamat, Ali Kuca, Kamil Sensors (Basel) Review Women’s breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models. MDPI 2018-08-25 /pmc/articles/PMC6164870/ /pubmed/30149621 http://dx.doi.org/10.3390/s18092799 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Mambou, Sebastien Jean Maresova, Petra Krejcar, Ondrej Selamat, Ali Kuca, Kamil Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model |
title | Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model |
title_full | Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model |
title_fullStr | Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model |
title_full_unstemmed | Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model |
title_short | Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model |
title_sort | breast cancer detection using infrared thermal imaging and a deep learning model |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164870/ https://www.ncbi.nlm.nih.gov/pubmed/30149621 http://dx.doi.org/10.3390/s18092799 |
work_keys_str_mv | AT mambousebastienjean breastcancerdetectionusinginfraredthermalimagingandadeeplearningmodel AT maresovapetra breastcancerdetectionusinginfraredthermalimagingandadeeplearningmodel AT krejcarondrej breastcancerdetectionusinginfraredthermalimagingandadeeplearningmodel AT selamatali breastcancerdetectionusinginfraredthermalimagingandadeeplearningmodel AT kucakamil breastcancerdetectionusinginfraredthermalimagingandadeeplearningmodel |