Cargando…
Fully Bayesian Prediction Algorithms for Mobile Robotic Sensors under Uncertain Localization Using Gaussian Markov Random Fields
In this paper, we present algorithms for predicting a spatio-temporal random field measured by mobile robotic sensors under uncertainties in localization and measurements. The spatio-temporal field of interest is modeled by a sum of a time-varying mean function and a Gaussian Markov random field (GM...
Autores principales: | Jadaliha, Mahdi, Jeong, Jinho, Xu, Yunfei, Choi, Jongeun, Kim, Junghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164902/ https://www.ncbi.nlm.nih.gov/pubmed/30200257 http://dx.doi.org/10.3390/s18092866 |
Ejemplares similares
-
Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks
por: Xu, Yunfei, et al.
Publicado: (2011) -
Bayesian prediction and adaptive sampling algorithms for mobile sensor networks: online environmental field reconstruction in space and time
por: Xu, Yunfei, et al.
Publicado: (2016) -
Revisiting Gaussian Markov random fields and Bayesian disease mapping
por: MacNab, Ying C
Publicado: (2022) -
Making Inference from Bayesian Animal Models utilising Gaussian Markov Random Field properties
por: Steinsland, Ingelin, et al.
Publicado: (2005) -
Gaussian Markov random fields: theory and applications
por: Rue, Havard, et al.
Publicado: (2005)