Cargando…

EasyLB: Adaptive Load Balancing Based on Flowlet Switching for Wireless Sensor Networks

Load balancing is effective in reducing network congestion and improving network throughput in wireless sensor networks (WSNs). Due to the fluctuation of wireless channels, traditional schemes achieving load balancing in WSNs need to maintain global or local congestion information, which turn out to...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Zhiqiang, Dong, Xiaodong, Chen, Sheng, Zhou, Xiaobo, Li, Keqiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164941/
https://www.ncbi.nlm.nih.gov/pubmed/30213098
http://dx.doi.org/10.3390/s18093060
Descripción
Sumario:Load balancing is effective in reducing network congestion and improving network throughput in wireless sensor networks (WSNs). Due to the fluctuation of wireless channels, traditional schemes achieving load balancing in WSNs need to maintain global or local congestion information, which turn out to be complicated to implement. In this paper, we design a flowlet switching based load balancing scheme, called EasyLB, by extending OpenFlow protocol. Flowlet switching is efficient to achieve adaptive load balancing in WSNs. Nevertheless, one tricky problem lies in determining the flowlet timeout value, [Formula: see text]. Setting it too small would risk reordering issue, while setting it too large would reduce flowlet opportunities. By formulating the timeout setting problem with a stationary distribution of Markov chain, we give a theoretical reference for setting an appropriate timeout value in flowlet switching based load balancing scheme. Moreover, non-equal probability path selection and multiple parallel load balancing paths are considered in timeout setting problem. Experimental results show that, by setting timeout value following the preceding theoretical reference, EasyLB is adaptive to wireless channel condition change and achieves fast convergence of load balancing after link failures.