Cargando…

Ligand-Free Nano-Au Catalysts on Nitrogen-Doped Graphene Filter for Continuous Flow Catalysis

In this study, the authors rationally designed a high-performance catalytic filter for continuous flow catalysis. The catalytic filter consisted of ligand-free nanoscale gold (nano-Au) catalysts and nitrogen-doped graphene (N-rGO). The Au catalyst was fabricated in situ onto a pre-formed N-rGO suppo...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yanbiao, Liu, Xiang, Yang, Shengnan, Li, Fang, Shen, Chensi, Ma, Chunyan, Huang, Manhong, Sand, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165004/
https://www.ncbi.nlm.nih.gov/pubmed/30189640
http://dx.doi.org/10.3390/nano8090688
Descripción
Sumario:In this study, the authors rationally designed a high-performance catalytic filter for continuous flow catalysis. The catalytic filter consisted of ligand-free nanoscale gold (nano-Au) catalysts and nitrogen-doped graphene (N-rGO). The Au catalyst was fabricated in situ onto a pre-formed N-rGO support by the NaBH(4) reduction of the Au precursor, and the size of the nano-Au was fine-tuned. A hydrothermal pretreatment of graphene oxide enriched nitrogen-containing species on the surface of two-dimensional graphene supports and enhanced the affinity of Au precursors onto the support via electrocatalytic attraction. The nano-Au catalysts acted as high-performance catalysts, and the N-rGO acted as ideal filter materials to anchor the catalysts. The catalytic activity of the as-designed catalytic filter was evaluated using 4-nitrophenol (4-NP) hydrogenation as a model catalytic reaction. The catalytic filters demonstrated superior catalytic activity and excellent stability, where a complete 4-nitrophenol conversion was readily achieved via a single pass through the catalytic filter. The as-fabricated catalytic filter outperformed the conventional batch reactors due to evidently improved mass transport. Some key operational parameters impacting the catalytic performance were identified and optimized. A similar catalytic performance was also observed for three 4-nitrophenol spiked real water samples (e.g., surface water, tap water, and industrial dyeing wastewater). The excellent catalytic activity of the nano-Au catalysts combined with the two-dimensional and mechanically stable graphene allowed for the rational design of various continuous flow catalytic membranes for potential industrial applications.