Cargando…

Multi-Timescale Drowsiness Characterization Based on a Video of a Driver’s Face

Drowsiness is a major cause of fatal accidents, in particular in transportation. It is therefore crucial to develop automatic, real-time drowsiness characterization systems designed to issue accurate and timely warnings of drowsiness to the driver. In practice, the least intrusive, physiology-based...

Descripción completa

Detalles Bibliográficos
Autores principales: Massoz, Quentin, Verly, Jacques G., Van Droogenbroeck, Marc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165048/
https://www.ncbi.nlm.nih.gov/pubmed/30149629
http://dx.doi.org/10.3390/s18092801
Descripción
Sumario:Drowsiness is a major cause of fatal accidents, in particular in transportation. It is therefore crucial to develop automatic, real-time drowsiness characterization systems designed to issue accurate and timely warnings of drowsiness to the driver. In practice, the least intrusive, physiology-based approach is to remotely monitor, via cameras, facial expressions indicative of drowsiness such as slow and long eye closures. Since the system’s decisions are based upon facial expressions in a given time window, there exists a trade-off between accuracy (best achieved with long windows, i.e., at long timescales) and responsiveness (best achieved with short windows, i.e., at short timescales). To deal with this trade-off, we develop a multi-timescale drowsiness characterization system composed of four binary drowsiness classifiers operating at four distinct timescales (5 s, 15 s, 30 s, and 60 s) and trained jointly. We introduce a multi-timescale ground truth of drowsiness, based on the reaction times (RTs) performed during standard Psychomotor Vigilance Tasks (PVTs), that strategically enables our system to characterize drowsiness with diverse trade-offs between accuracy and responsiveness. We evaluated our system on 29 subjects via leave-one-subject-out cross-validation and obtained strong results, i.e., global accuracies of 70%, 85%, 89%, and 94% for the four classifiers operating at increasing timescales, respectively.