Cargando…
Multi-Timescale Drowsiness Characterization Based on a Video of a Driver’s Face
Drowsiness is a major cause of fatal accidents, in particular in transportation. It is therefore crucial to develop automatic, real-time drowsiness characterization systems designed to issue accurate and timely warnings of drowsiness to the driver. In practice, the least intrusive, physiology-based...
Autores principales: | Massoz, Quentin, Verly, Jacques G., Van Droogenbroeck, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165048/ https://www.ncbi.nlm.nih.gov/pubmed/30149629 http://dx.doi.org/10.3390/s18092801 |
Ejemplares similares
-
Survey and Synthesis of State of the Art in Driver Monitoring
por: Halin, Anaïs, et al.
Publicado: (2021) -
Tests of a New Drowsiness Characterization and Monitoring System Based on Ocular Parameters
por: François, Clémentine, et al.
Publicado: (2016) -
Detecting Driver Drowsiness Based on Sensors: A Review
por: Sahayadhas, Arun, et al.
Publicado: (2012) -
A CNN-Based Wearable System for Driver Drowsiness Detection
por: Li, Yongkai, et al.
Publicado: (2023) -
An Efficient Approach for Driver Drowsiness Detection at Moderate Drowsiness Level Based on Electroencephalography Signal and Vehicle Dynamics Data
por: Houshmand, Sara, et al.
Publicado: (2022)