Cargando…
A Novel Fault Detection with Minimizing the Noise-Signal Ratio Using Reinforcement Learning
In this paper, a reinforcement learning approach is proposed to detect unexpected faults, where the noise-signal ratio of the data series is minimized to achieve robustness. Based on the information of fault free data series, fault detection is promptly implemented by comparing with the model foreca...
Autores principales: | Zhang, Dapeng, Lin, Zhiling, Gao, Zhiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165079/ https://www.ncbi.nlm.nih.gov/pubmed/30217091 http://dx.doi.org/10.3390/s18093087 |
Ejemplares similares
-
Detecting Enclosed Board Channel of Data Acquisition System Using Probabilistic Neural Network with Null Matrix
por: Zhang, Dapeng, et al.
Publicado: (2022) -
Reinforcement learned adversarial agent (ReLAA) for active fault detection and prediction in space habitats
por: Overlin, Matthew, et al.
Publicado: (2023) -
Optimal Signal Detection in a Low Signal-to-Noise Ratio Environment
por: Ciodaro, T, et al.
Publicado: (2011) -
Contrastive Learning for Fault Detection and Diagnostics in the Context of Changing Operating Conditions and Novel Fault Types
por: Rombach, Katharina, et al.
Publicado: (2021) -
On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data
por: Welvaert, Marijke, et al.
Publicado: (2013)