Cargando…

Research on the Impact Loading and Energy Dissipation of Concrete after Elevated Temperature under Different Heating Gradients and Cooling Methods

To provide theoretical basis for fire rescue, post-disaster safety evaluation, and reinforcement of concrete structures, C35 concrete materials are treated with high-temperature heating (200 °C, 400 °C, 600 °C, 800 °C) under two different heating gradients. After natural cooling and water cooling to...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhai, Yue, Li, Yubai, Li, Yan, Jiang, Wenqi, Liu, Xuyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165125/
https://www.ncbi.nlm.nih.gov/pubmed/30205467
http://dx.doi.org/10.3390/ma11091651
_version_ 1783359763123273728
author Zhai, Yue
Li, Yubai
Li, Yan
Jiang, Wenqi
Liu, Xuyang
author_facet Zhai, Yue
Li, Yubai
Li, Yan
Jiang, Wenqi
Liu, Xuyang
author_sort Zhai, Yue
collection PubMed
description To provide theoretical basis for fire rescue, post-disaster safety evaluation, and reinforcement of concrete structures, C35 concrete materials are treated with high-temperature heating (200 °C, 400 °C, 600 °C, 800 °C) under two different heating gradients. After natural cooling and water cooling to normal temperature, an impact compression test was carried out at different loading rates using a Split Hopkinson Pressure Bar (SHPB) system with a diameter of 100 mm, and finally the crushed specimens were subjected to a sieving test. The effects of elevated temperatures, cooling methods, heating gradients, and loading rates on the fragment size distribution, fractal characteristics, and energy dissipation of impact-compressed concrete specimens were studied. The results show that with the increase of the loading rate and the rise of the heating temperature, the crushing degree of concrete specimens gradually increases, the average fragment size decreases, and the mass distribution of the fragments move from the coarse end to the fine end. The fragment size distribution of the specimen has obvious fractal characteristics. In addition, its fractal dimension increases with the increase of loading rate and heating temperature, the average size of the specimen fragments decreases correspondingly, and the fracture of the specimen becomes more serious. When the different heating gradients were compared, it was found that the fractal dimension of the specimens subjected to rapid heating treatment was larger than that of the slow heating treatment specimens, and the crushing degree of the specimens with different cooling methods was discrete. By analyzing the energy dissipation of the specimen under different conditions, it is shown that both the fractal dimension and the peak stress increase with the increase of the fragmentation energy dissipation density. It shows that there is a close correlation between the change of fractal dimension and its macroscopic dynamic mechanical properties.
format Online
Article
Text
id pubmed-6165125
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61651252018-10-12 Research on the Impact Loading and Energy Dissipation of Concrete after Elevated Temperature under Different Heating Gradients and Cooling Methods Zhai, Yue Li, Yubai Li, Yan Jiang, Wenqi Liu, Xuyang Materials (Basel) Article To provide theoretical basis for fire rescue, post-disaster safety evaluation, and reinforcement of concrete structures, C35 concrete materials are treated with high-temperature heating (200 °C, 400 °C, 600 °C, 800 °C) under two different heating gradients. After natural cooling and water cooling to normal temperature, an impact compression test was carried out at different loading rates using a Split Hopkinson Pressure Bar (SHPB) system with a diameter of 100 mm, and finally the crushed specimens were subjected to a sieving test. The effects of elevated temperatures, cooling methods, heating gradients, and loading rates on the fragment size distribution, fractal characteristics, and energy dissipation of impact-compressed concrete specimens were studied. The results show that with the increase of the loading rate and the rise of the heating temperature, the crushing degree of concrete specimens gradually increases, the average fragment size decreases, and the mass distribution of the fragments move from the coarse end to the fine end. The fragment size distribution of the specimen has obvious fractal characteristics. In addition, its fractal dimension increases with the increase of loading rate and heating temperature, the average size of the specimen fragments decreases correspondingly, and the fracture of the specimen becomes more serious. When the different heating gradients were compared, it was found that the fractal dimension of the specimens subjected to rapid heating treatment was larger than that of the slow heating treatment specimens, and the crushing degree of the specimens with different cooling methods was discrete. By analyzing the energy dissipation of the specimen under different conditions, it is shown that both the fractal dimension and the peak stress increase with the increase of the fragmentation energy dissipation density. It shows that there is a close correlation between the change of fractal dimension and its macroscopic dynamic mechanical properties. MDPI 2018-09-07 /pmc/articles/PMC6165125/ /pubmed/30205467 http://dx.doi.org/10.3390/ma11091651 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhai, Yue
Li, Yubai
Li, Yan
Jiang, Wenqi
Liu, Xuyang
Research on the Impact Loading and Energy Dissipation of Concrete after Elevated Temperature under Different Heating Gradients and Cooling Methods
title Research on the Impact Loading and Energy Dissipation of Concrete after Elevated Temperature under Different Heating Gradients and Cooling Methods
title_full Research on the Impact Loading and Energy Dissipation of Concrete after Elevated Temperature under Different Heating Gradients and Cooling Methods
title_fullStr Research on the Impact Loading and Energy Dissipation of Concrete after Elevated Temperature under Different Heating Gradients and Cooling Methods
title_full_unstemmed Research on the Impact Loading and Energy Dissipation of Concrete after Elevated Temperature under Different Heating Gradients and Cooling Methods
title_short Research on the Impact Loading and Energy Dissipation of Concrete after Elevated Temperature under Different Heating Gradients and Cooling Methods
title_sort research on the impact loading and energy dissipation of concrete after elevated temperature under different heating gradients and cooling methods
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165125/
https://www.ncbi.nlm.nih.gov/pubmed/30205467
http://dx.doi.org/10.3390/ma11091651
work_keys_str_mv AT zhaiyue researchontheimpactloadingandenergydissipationofconcreteafterelevatedtemperatureunderdifferentheatinggradientsandcoolingmethods
AT liyubai researchontheimpactloadingandenergydissipationofconcreteafterelevatedtemperatureunderdifferentheatinggradientsandcoolingmethods
AT liyan researchontheimpactloadingandenergydissipationofconcreteafterelevatedtemperatureunderdifferentheatinggradientsandcoolingmethods
AT jiangwenqi researchontheimpactloadingandenergydissipationofconcreteafterelevatedtemperatureunderdifferentheatinggradientsandcoolingmethods
AT liuxuyang researchontheimpactloadingandenergydissipationofconcreteafterelevatedtemperatureunderdifferentheatinggradientsandcoolingmethods