Cargando…
Hybrid Particle Swarm Optimization for Multi-Sensor Data Fusion
A hybrid particle swarm optimization (PSO), able to overcome the large-scale nonlinearity or heavily correlation in the data fusion model of multiple sensing information, is proposed in this paper. In recent smart convergence technology, multiple similar and/or dissimilar sensors are widely used to...
Autores principales: | Kim, Hyunseok, Suh, Dongjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165151/ https://www.ncbi.nlm.nih.gov/pubmed/30149565 http://dx.doi.org/10.3390/s18092792 |
Ejemplares similares
-
Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors
por: Li, Chenming, et al.
Publicado: (2018) -
A Hybrid Multi-Objective Particle Swarm Optimization with Central Control Strategy
por: Yang, Meilan, et al.
Publicado: (2022) -
Integrating Sensor Ontologies with Niching Multi-Objective Particle Swarm Optimization Algorithm
por: Zhuang, Yucheng, et al.
Publicado: (2023) -
Application of particle swarm optimization in optimal placement of tsunami sensors
por: Ferrolino, Angelie, et al.
Publicado: (2020) -
Dual Cluster Head Optimization of Wireless Sensor Networks Based on Multi-Objective Particle Swarm Optimization
por: Zheng, Aiyun, et al.
Publicado: (2022)