Cargando…

A Lightweight Convolutional Neural Network Based on Visual Attention for SAR Image Target Classification

With the continuous development of the convolutional neural network (CNN) concept and other deep learning technologies, target recognition in Synthetic Aperture Radar (SAR) images has entered a new stage. At present, shallow CNNs with simple structure are mostly applied in SAR image target recogniti...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Jiaqi, Qu, Changwen, Li, Jianwei, Peng, Shujuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165177/
https://www.ncbi.nlm.nih.gov/pubmed/30208646
http://dx.doi.org/10.3390/s18093039
Descripción
Sumario:With the continuous development of the convolutional neural network (CNN) concept and other deep learning technologies, target recognition in Synthetic Aperture Radar (SAR) images has entered a new stage. At present, shallow CNNs with simple structure are mostly applied in SAR image target recognition, even though their feature extraction ability is limited to a large extent. What’s more, research on improving SAR image target recognition efficiency and imbalanced data processing is relatively scarce. Thus, a lightweight CNN model for target recognition in SAR image is designed in this paper. First, based on visual attention mechanism, the channel attention by-pass and spatial attention by-pass are introduced to the network to enhance the feature extraction ability. Then, the depthwise separable convolution is used to replace the standard convolution to reduce the computation cost and heighten the recognition efficiency. Finally, a new weighted distance measure loss function is introduced to weaken the adverse effect of data imbalance on the recognition accuracy of minority class. A series of recognition experiments based on two open data sets of MSTAR and OpenSARShip are implemented. Experimental results show that compared with four advanced networks recently proposed, our network can greatly diminish the model size and iteration time while guaranteeing the recognition accuracy, and it can effectively alleviate the adverse effects of data imbalance on recognition results.