Cargando…
Globally Optimal Distributed Kalman Filtering for Multisensor Systems with Unknown Inputs
In this paper, the state estimation for dynamic system with unknown inputs modeled as an autoregressive AR (1) process is considered. We propose an optimal algorithm in mean square error sense by using difference method to eliminate the unknown inputs. Moreover, we consider the state estimation for...
Autores principales: | Ruan, Yali, Luo, Yingting, Zhu, Yunmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165186/ https://www.ncbi.nlm.nih.gov/pubmed/30200637 http://dx.doi.org/10.3390/s18092976 |
Ejemplares similares
-
Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications
por: Luo, Yingting, et al.
Publicado: (2008) -
Track Fusion Fractional Kalman Filter for the Multisensor Descriptor Fractional Systems
por: Zhang, Bo, et al.
Publicado: (2022) -
Optimally Distributed Kalman Filtering with Data-Driven Communication †
por: Dormann, Katharina, et al.
Publicado: (2018) -
Multisensor Parallel Largest Ellipsoid Distributed Data Fusion with Unknown Cross-Covariances
por: Liu, Baoyu, et al.
Publicado: (2017) -
Networked multisensor decision and estimation fusion: based on advanced mathematical methods
por: Zhu, Yunmin
Publicado: (2013)