Cargando…
Supervised PolSAR Image Classification with Multiple Features and Locally Linear Embedding
In this paper, we propose a new method of land use and land cover classification for polarimetric SAR data. This algorithm consists of three parts. First, the multiple-component model-based scattering decomposition technique is improved and the decomposed scattering powers can be used to support the...
Autores principales: | Zhang, Qiang, Wei, Xinli, Xiang, Deliang, Sun, Mengqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165264/ https://www.ncbi.nlm.nih.gov/pubmed/30213084 http://dx.doi.org/10.3390/s18093054 |
Ejemplares similares
-
Semi-Supervised Classification of PolSAR Images Based on Co-Training of CNN and SVM with Limited Labeled Samples
por: Zhao, Mingjun, et al.
Publicado: (2023) -
Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks
por: Wang, Lei, et al.
Publicado: (2018) -
Gaofen-3 PolSAR Image Classification via XGBoost and Polarimetric Spatial Information
por: Dong, Hao, et al.
Publicado: (2018) -
An Adaptive Nonlocal Mean Filter for PolSAR Data with Shape-Adaptive Patches Matching
por: Shen, Peng, et al.
Publicado: (2018) -
Semantic segmentation of PolSAR image data using advanced deep learning model
por: Garg, Rajat, et al.
Publicado: (2021)