Cargando…
Semi-Supervised Segmentation Framework Based on Spot-Divergence Supervoxelization of Multi-Sensor Fusion Data for Autonomous Forest Machine Applications
In this paper, a novel semi-supervised segmentation framework based on a spot-divergence supervoxelization of multi-sensor fusion data is proposed for autonomous forest machine (AFMs) applications in complex environments. Given the multi-sensor measuring system, our framework addresses three success...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165460/ https://www.ncbi.nlm.nih.gov/pubmed/30213109 http://dx.doi.org/10.3390/s18093061 |
Sumario: | In this paper, a novel semi-supervised segmentation framework based on a spot-divergence supervoxelization of multi-sensor fusion data is proposed for autonomous forest machine (AFMs) applications in complex environments. Given the multi-sensor measuring system, our framework addresses three successive steps: firstly, the relationship of multi-sensor coordinates is jointly calibrated to form higher-dimensional fusion data. Then, spot-divergence supervoxels representing the size-change property are given to produce feature vectors covering comprehensive information of multi-sensors at a time. Finally, the Gaussian density peak clustering is proposed to segment supervoxels into sematic objects in the semi-supervised way, which non-requires parameters preset in manual. It is demonstrated that the proposed framework achieves a balancing act both for supervoxel generation and sematic segmentation. Comparative experiments show that the well performance of segmenting various objects in terms of segmentation accuracy (F-score up to 95.6%) and operation time, which would improve intelligent capability of AFMs. |
---|