Cargando…
Semi-Supervised Segmentation Framework Based on Spot-Divergence Supervoxelization of Multi-Sensor Fusion Data for Autonomous Forest Machine Applications
In this paper, a novel semi-supervised segmentation framework based on a spot-divergence supervoxelization of multi-sensor fusion data is proposed for autonomous forest machine (AFMs) applications in complex environments. Given the multi-sensor measuring system, our framework addresses three success...
Autores principales: | Kong, Jian-lei, Wang, Zhen-ni, Jin, Xue-bo, Wang, Xiao-yi, Su, Ting-li, Wang, Jian-li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165460/ https://www.ncbi.nlm.nih.gov/pubmed/30213109 http://dx.doi.org/10.3390/s18093061 |
Ejemplares similares
-
Supervoxel Segmentation with Voxel-Related Gaussian Mixture Model
por: Ban, Zhihua, et al.
Publicado: (2018) -
Automatic Liver Segmentation on Volumetric CT Images Using Supervoxel-Based Graph Cuts
por: Wu, Weiwei, et al.
Publicado: (2016) -
Pieces-of-parts for supervoxel segmentation with global context: Application to DCE-MRI tumour delineation()
por: Irving, Benjamin, et al.
Publicado: (2016) -
Semi-Supervised Segmentation Framework for Gastrointestinal Lesion Diagnosis in Endoscopic Images
por: Lonseko, Zenebe Markos, et al.
Publicado: (2023) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018)