Cargando…

Application of an Improved Multipoint Optimal Minimum Entropy Deconvolution Adjusted for Gearbox Composite Fault Diagnosis

The fault feature extraction of gearbox is difficult to achieve under complex working conditions, and this paper presents a hybrid fault diagnosis method for gearbox based on the combining product function (CPF) and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) methods. First, e...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Wenan, Wang, Zhijian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165486/
https://www.ncbi.nlm.nih.gov/pubmed/30200216
http://dx.doi.org/10.3390/s18092861
Descripción
Sumario:The fault feature extraction of gearbox is difficult to achieve under complex working conditions, and this paper presents a hybrid fault diagnosis method for gearbox based on the combining product function (CPF) and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) methods. First, ensemble local mean decomposition (ELMD) is utilized to reduce the noise in original signal, and get a series of product functions (PFs), through the correlation coefficient method to remove false components and residual components. Then, multi-point kurtosis of the definition is achieved by calculating the multi-point kurtosis spectrum of each layer PF, and the fault feature period is extracted and the PFs without periodic impact are removed. After that, in order to maintain the integrity of the original signal, the PFs with the same period are recombined by the combined product function method. Finally, the different cycle interval is configured, reduce the noise through MOMEDA on the combined signal, to further extract the fault feature. The method is applied to the feature extraction of gear box composite fault to verify the feasibility of this method.