Cargando…
Transfer Learning for Soil Spectroscopy Based on Convolutional Neural Networks and Its Application in Soil Clay Content Mapping Using Hyperspectral Imagery
Soil spectra are often measured in the laboratory, and there is an increasing number of large-scale soil spectral libraries establishing across the world. However, calibration models developed from soil libraries are difficult to apply to spectral data acquired from the field or space. Transfer lear...
Autores principales: | Liu, Lanfa, Ji, Min, Buchroithner, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165490/ https://www.ncbi.nlm.nih.gov/pubmed/30235885 http://dx.doi.org/10.3390/s18093169 |
Ejemplares similares
-
Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring
por: Ge, Xiangyu, et al.
Publicado: (2019) -
Mapping barrier island soil moisture using a radiative transfer model of hyperspectral imagery from an unmanned aerial system
por: Eon, Rehman S., et al.
Publicado: (2021) -
Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative
por: Wang, Jingzhe, et al.
Publicado: (2017) -
Soil clay content underlies prion infection odds
por: David Walter, W., et al.
Publicado: (2011) -
Estimation and mapping of soil texture content based on unmanned aerial vehicle hyperspectral imaging
por: Song, Qi, et al.
Publicado: (2023)