Cargando…

Pipeline Inspection Gauge’s Velocity Simulation Based on Pressure Differential Using Artificial Neural Networks

Industrial pipelines must be inspected to detect typical failures, such as obstructions and deformations, during their lifetime. In the petroleum industry, the most used non-destructive technique to inspect buried pipelines is pigging. This technique consists of launching a Pipeline Inspection Gauge...

Descripción completa

Detalles Bibliográficos
Autores principales: de Araújo, Renan Pires, de Freitas, Victor Carvalho Galvão, de Lima, Gustavo Fernandes, Salazar, Andrés Ortiz, Neto, Adrião Duarte Dória, Maitelli, André Laurindo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165500/
https://www.ncbi.nlm.nih.gov/pubmed/30216994
http://dx.doi.org/10.3390/s18093072
Descripción
Sumario:Industrial pipelines must be inspected to detect typical failures, such as obstructions and deformations, during their lifetime. In the petroleum industry, the most used non-destructive technique to inspect buried pipelines is pigging. This technique consists of launching a Pipeline Inspection Gauge (PIG) inside the pipeline, which is driven by the pressure differential produced by fluid flow. The purpose of this work is to study the application of artificial neural networks to calculate the PIG’s velocity based on the pressure differential. We launch a prototype PIG inside a testing pipeline, where this PIG gathers velocity data from an odometer-based system, while a supervisory system gathers pressure data from the testing pipeline. Then we train a Multilayer Perceptron (MLP) and a Nonlinear Autoregressive Network with eXogenous Inputs (NARX) network with the gathered data to predict velocity. The results suggest it is possible to use a neural network to model the PIG’s velocity from pressure differential measurements. Our method is a new approach to the typical speed measurements based only on odometer, since the odometer is prone to fail and present poor results under some circumstances. Moreover, it can be used to provide redundancy, improving reliability of data obtained during the test.