Cargando…
Evaluation of deep learning methods for parotid gland segmentation from CT images
The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and low contrast to surrounding structures, segmenting the parotid gland i...
Autores principales: | Hänsch, Annika, Schwier, Michael, Gass, Tobias, Morgas, Tomasz, Haas, Benjamin, Dicken, Volker, Meine, Hans, Klein, Jan, Hahn, Horst K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165912/ https://www.ncbi.nlm.nih.gov/pubmed/30276222 http://dx.doi.org/10.1117/1.JMI.6.1.011005 |
Ejemplares similares
-
Employing deep convolutional neural networks for segmenting the medial retropharyngeal lymph nodes in CT studies of dogs
por: Schmid, David, et al.
Publicado: (2022) -
Segmentation of Lung Nodules on CT Images Using a Nested Three-Dimensional Fully Connected Convolutional Network
por: Kido, Shoji, et al.
Publicado: (2022) -
Hippocampus segmentation in CT using deep learning: impact of MR versus CT-based training contours
por: Hänsch, Annika, et al.
Publicado: (2020) -
DeepHeartCT: A fully automatic artificial intelligence hybrid framework based on convolutional neural network and multi-atlas segmentation for multi-structure cardiac computed tomography angiography image segmentation
por: Bui, Vy, et al.
Publicado: (2022) -
Unsupervised Text Segmentation Predicts Eye Fixations During Reading
por: Yang, Jinbiao, et al.
Publicado: (2022)