Cargando…
Comparison of the modified unbounded penalty and the LASSO to select predictive genes of response to chemotherapy in breast cancer
Covariate selection is a fundamental step when building sparse prediction models in order to avoid overfitting and to gain a better interpretation of the classifier without losing its predictive accuracy. In practice the LASSO regression of Tibshirani, which penalizes the likelihood of the model by...
Autores principales: | Collignon, Olivier, Han, Jeongseop, An, Hyungmi, Oh, Seungyoung, Lee, Youngjo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166949/ https://www.ncbi.nlm.nih.gov/pubmed/30273405 http://dx.doi.org/10.1371/journal.pone.0204897 |
Ejemplares similares
-
MCPeSe: Monte Carlo penalty selection for graphical lasso
por: Kuismin, Markku, et al.
Publicado: (2020) -
Discovering graphical Granger causality using the truncating lasso penalty
por: Shojaie, Ali, et al.
Publicado: (2010) -
A Disentangled Representation Based Brain Image Fusion via Group Lasso Penalty
por: Wang, Anqi, et al.
Publicado: (2022) -
IPF-LASSO: Integrative L
(1)-Penalized Regression with Penalty Factors for Prediction Based on Multi-Omics Data
por: Boulesteix, Anne-Laure, et al.
Publicado: (2017) -
Improved Variable Selection Algorithm Using a LASSO-Type Penalty, with an Application to Assessing Hepatitis B Infection Relevant Factors in Community Residents
por: Guo, Pi, et al.
Publicado: (2015)