Cargando…

Comparison of the modified unbounded penalty and the LASSO to select predictive genes of response to chemotherapy in breast cancer

Covariate selection is a fundamental step when building sparse prediction models in order to avoid overfitting and to gain a better interpretation of the classifier without losing its predictive accuracy. In practice the LASSO regression of Tibshirani, which penalizes the likelihood of the model by...

Descripción completa

Detalles Bibliográficos
Autores principales: Collignon, Olivier, Han, Jeongseop, An, Hyungmi, Oh, Seungyoung, Lee, Youngjo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166949/
https://www.ncbi.nlm.nih.gov/pubmed/30273405
http://dx.doi.org/10.1371/journal.pone.0204897

Ejemplares similares