Cargando…
Cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) is mediated by the inhibition of BAK-dependent mitochondrial apoptosis pathway
The inhibitory mechanism of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) against apoptosis induced by the microtubule-damaging agents (MDAs), nocodazole (NOC) and 2-methoxyestradiol (2-MeO-E(2)), or a DNA-damaging agent (DDA), camptothecin (CPT) were investigated in human Jurkat T...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166973/ https://www.ncbi.nlm.nih.gov/pubmed/30273361 http://dx.doi.org/10.1371/journal.pone.0204585 |
_version_ | 1783360122304593920 |
---|---|
author | Jun, Do Youn Jang, Won Young Kim, Ki Yun Woo, Mi Hee Kim, Young Ho |
author_facet | Jun, Do Youn Jang, Won Young Kim, Ki Yun Woo, Mi Hee Kim, Young Ho |
author_sort | Jun, Do Youn |
collection | PubMed |
description | The inhibitory mechanism of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) against apoptosis induced by the microtubule-damaging agents (MDAs), nocodazole (NOC) and 2-methoxyestradiol (2-MeO-E(2)), or a DNA-damaging agent (DDA), camptothecin (CPT) were investigated in human Jurkat T cell clones (J/Neo and J/BCL-XL cells). Treatment of J/Neo cells with NOC, 2-MeO-E(2), or CPT caused cytotoxicity and apoptotic DNA fragmentation but these events were significantly attenuated in the presence of CMEP-NQ. Although not only MDA (NOC or 2-MeO-E(2))-induced mitotic arrest, CDK1 activation, and BCL-2, BCL-XL and BIM phosphorylation, but also DDA (CPT)-induced S-phase arrest and ATM-CHK1/CHK2-p53 pathway activation were not or were barely affected in the presence of CMEP-NQ, the levels of anti-apoptotic BAG3 and MCL-1, which were markedly downregulated after MDA- or DDA-treatment, were rather elevated by CMEP-NQ. Under the same conditions, MDA- or DDA-induced mitochondrial apoptotic events including BAK activation, mitochondrial membrane potential (Δψm) loss, caspase-9 activation, and PARP cleavage were significantly inhibited by CMEP-NQ. While MDA- or DDA-induced sub-G(1) peak and Δψm loss were abrogated in J/BCL-XL cells, MDA-induced mitotic arrest and DDA-induced S-arrest were more apparent in J/BCL-XL cells than in J/Neo cells. Simultaneously, the induced cell cycle arrest in J/BCL-XL cells was not significantly disturbed by CMEP-NQ. MDA- or DDA-treatment caused intracellular reactive oxygen species (ROS) production; however, MDA- or DDA-induced ROS production was almost completely abrogated in J/BCL-XL cells. MDA- or DDA-induced ROS production in J/Neo cells was significantly suppressed by CMEP-NQ, but the suppressive effect was hardly observed in J/BCL-XL cells. Together, these results show that CMEP-NQ efficiently protects Jurkat T cells from apoptotic cell death via the elevation of BAG3 and MCL-1 levels, which results in the inhibition of intrinsic BAK-dependent mitochondrial apoptosis pathway, as does the overexpression of BCL-XL. |
format | Online Article Text |
id | pubmed-6166973 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61669732018-10-19 Cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) is mediated by the inhibition of BAK-dependent mitochondrial apoptosis pathway Jun, Do Youn Jang, Won Young Kim, Ki Yun Woo, Mi Hee Kim, Young Ho PLoS One Research Article The inhibitory mechanism of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) against apoptosis induced by the microtubule-damaging agents (MDAs), nocodazole (NOC) and 2-methoxyestradiol (2-MeO-E(2)), or a DNA-damaging agent (DDA), camptothecin (CPT) were investigated in human Jurkat T cell clones (J/Neo and J/BCL-XL cells). Treatment of J/Neo cells with NOC, 2-MeO-E(2), or CPT caused cytotoxicity and apoptotic DNA fragmentation but these events were significantly attenuated in the presence of CMEP-NQ. Although not only MDA (NOC or 2-MeO-E(2))-induced mitotic arrest, CDK1 activation, and BCL-2, BCL-XL and BIM phosphorylation, but also DDA (CPT)-induced S-phase arrest and ATM-CHK1/CHK2-p53 pathway activation were not or were barely affected in the presence of CMEP-NQ, the levels of anti-apoptotic BAG3 and MCL-1, which were markedly downregulated after MDA- or DDA-treatment, were rather elevated by CMEP-NQ. Under the same conditions, MDA- or DDA-induced mitochondrial apoptotic events including BAK activation, mitochondrial membrane potential (Δψm) loss, caspase-9 activation, and PARP cleavage were significantly inhibited by CMEP-NQ. While MDA- or DDA-induced sub-G(1) peak and Δψm loss were abrogated in J/BCL-XL cells, MDA-induced mitotic arrest and DDA-induced S-arrest were more apparent in J/BCL-XL cells than in J/Neo cells. Simultaneously, the induced cell cycle arrest in J/BCL-XL cells was not significantly disturbed by CMEP-NQ. MDA- or DDA-treatment caused intracellular reactive oxygen species (ROS) production; however, MDA- or DDA-induced ROS production was almost completely abrogated in J/BCL-XL cells. MDA- or DDA-induced ROS production in J/Neo cells was significantly suppressed by CMEP-NQ, but the suppressive effect was hardly observed in J/BCL-XL cells. Together, these results show that CMEP-NQ efficiently protects Jurkat T cells from apoptotic cell death via the elevation of BAG3 and MCL-1 levels, which results in the inhibition of intrinsic BAK-dependent mitochondrial apoptosis pathway, as does the overexpression of BCL-XL. Public Library of Science 2018-10-01 /pmc/articles/PMC6166973/ /pubmed/30273361 http://dx.doi.org/10.1371/journal.pone.0204585 Text en © 2018 Jun et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Jun, Do Youn Jang, Won Young Kim, Ki Yun Woo, Mi Hee Kim, Young Ho Cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) is mediated by the inhibition of BAK-dependent mitochondrial apoptosis pathway |
title | Cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) is mediated by the inhibition of BAK-dependent mitochondrial apoptosis pathway |
title_full | Cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) is mediated by the inhibition of BAK-dependent mitochondrial apoptosis pathway |
title_fullStr | Cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) is mediated by the inhibition of BAK-dependent mitochondrial apoptosis pathway |
title_full_unstemmed | Cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) is mediated by the inhibition of BAK-dependent mitochondrial apoptosis pathway |
title_short | Cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) is mediated by the inhibition of BAK-dependent mitochondrial apoptosis pathway |
title_sort | cytoprotective effect of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (cmep-nq) is mediated by the inhibition of bak-dependent mitochondrial apoptosis pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166973/ https://www.ncbi.nlm.nih.gov/pubmed/30273361 http://dx.doi.org/10.1371/journal.pone.0204585 |
work_keys_str_mv | AT jundoyoun cytoprotectiveeffectof2carbomethoxy23epoxy3prenyl14naphthoquinonecmepnqismediatedbytheinhibitionofbakdependentmitochondrialapoptosispathway AT jangwonyoung cytoprotectiveeffectof2carbomethoxy23epoxy3prenyl14naphthoquinonecmepnqismediatedbytheinhibitionofbakdependentmitochondrialapoptosispathway AT kimkiyun cytoprotectiveeffectof2carbomethoxy23epoxy3prenyl14naphthoquinonecmepnqismediatedbytheinhibitionofbakdependentmitochondrialapoptosispathway AT woomihee cytoprotectiveeffectof2carbomethoxy23epoxy3prenyl14naphthoquinonecmepnqismediatedbytheinhibitionofbakdependentmitochondrialapoptosispathway AT kimyoungho cytoprotectiveeffectof2carbomethoxy23epoxy3prenyl14naphthoquinonecmepnqismediatedbytheinhibitionofbakdependentmitochondrialapoptosispathway |