Cargando…

Effects of breeding center, age and parasite burden on fecal triiodothyronine levels in forest musk deer

The objective of this study was to evaluate the effects of sex, breeding center and age on fecal triiodothyronine levels in captive forest musk deer Moschus berezovskii, and to explore the age-intensity model of gastrointestinal parasites. Furthermore, the association between fecal triiodothyronine...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xiaolong, Wei, Yuting, Huang, Songlin, Liu, Gang, Wang, Yihua, Hu, Defu, Liu, Shuqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166975/
https://www.ncbi.nlm.nih.gov/pubmed/30273412
http://dx.doi.org/10.1371/journal.pone.0205080
Descripción
Sumario:The objective of this study was to evaluate the effects of sex, breeding center and age on fecal triiodothyronine levels in captive forest musk deer Moschus berezovskii, and to explore the age-intensity model of gastrointestinal parasites. Furthermore, the association between fecal triiodothyronine levels and parasite egg shedding was also analyzed. We collected musk deer fecal samples from two breeding centers located in Shaanxi and Sichuan province, China. Enzyme-linked immunosorbent assays were utilized to estimate the fecal triiodothyronine concentrations and profiles, and fecal parasite eggs or oocysts were counted using the McMaster technique. Female deer from both breeding centers consistently showed higher triiodothyronine concentrations than those observed in males, which indicates that a distinct physiology pattern occurs by sex. The triiodothyronine concentration in Sichuan breeding center was significantly higher than that in Shaanxi center for both sexes, suggesting that differences in environment, diet and management practices are likely to affect the metabolism. In addition, a negative relationship between triiodothyronine concentrations and age was found (r = - 0.75, p < 0.001), and parasite egg shedding was also negatively associated with age (r = - 0.51, p < 0.001), by which we can infer that older animals evolves a more developed immune system. Finally, a positive association between parasite egg shedding and triiodothyronine levels was found, which could be explained by the additional energy metabolism resulting from parasitic infection. Results from this study might suggest metabolic and immunological adaptations in forest musk deer. These baseline data could be used to unveil metabolic status and establish parasite control strategies, which has great potential in captive population management as well as their general health evaluations.