Cargando…
Light control of G protein signaling pathways by a novel photopigment
Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166976/ https://www.ncbi.nlm.nih.gov/pubmed/30273391 http://dx.doi.org/10.1371/journal.pone.0205015 |
_version_ | 1783360123050131456 |
---|---|
author | Osorno, Tomás Arenas, Oscar Ramírez-Suarez, Nelson J. Echeverry, Fabio A. Gomez, María del Pilar Nasi, Enrico |
author_facet | Osorno, Tomás Arenas, Oscar Ramírez-Suarez, Nelson J. Echeverry, Fabio A. Gomez, María del Pilar Nasi, Enrico |
author_sort | Osorno, Tomás |
collection | PubMed |
description | Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped if similar opto-genetic techniques could be extended to the control of chemical signaling pathways. Photopigments from invertebrate photoreceptors are an obvious choice—as they do not bleach upon illumination -however, their functional expression has been problematic. We exploited an unusual opsin, pScop2, recently identified in ciliary photoreceptors of scallop. Phylogenetically, it is closer to vertebrate opsins, and offers the advantage of being a bi-stable photopigment. We inserted its coding sequence and a fluorescent protein reporter into plasmid vectors and demonstrated heterologous expression in various mammalian cell lines. HEK 293 cells were selected as a heterologous system for functional analysis, because wild type cells displayed the largest currents in response to the G-protein activator, GTP-γ-S. A line of HEK cells stably transfected with pScop2 was generated; after reconstitution of the photopigment with retinal, light responses were obtained in some cells, albeit of modest amplitude. In native photoreceptors pScop2 couples to G(o); HEK cells express poorly this G-protein, but have a prominent Gq/PLC pathway linked to internal Ca mobilization. To enhance pScop2 competence to tap into this pathway, we swapped its third intracellular loop—important to confer specificity of interaction between 7TMDRs and G-proteins—with that of a G(q)-linked opsin which we cloned from microvillar photoreceptors present in the same retina. The chimeric construct was evaluated by a Ca fluorescence assay, and was shown to mediate a robust mobilization of internal calcium in response to illumination. The results project pScop2 as a potentially powerful optogenetic tool to control signaling pathways. |
format | Online Article Text |
id | pubmed-6166976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61669762018-10-19 Light control of G protein signaling pathways by a novel photopigment Osorno, Tomás Arenas, Oscar Ramírez-Suarez, Nelson J. Echeverry, Fabio A. Gomez, María del Pilar Nasi, Enrico PLoS One Research Article Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped if similar opto-genetic techniques could be extended to the control of chemical signaling pathways. Photopigments from invertebrate photoreceptors are an obvious choice—as they do not bleach upon illumination -however, their functional expression has been problematic. We exploited an unusual opsin, pScop2, recently identified in ciliary photoreceptors of scallop. Phylogenetically, it is closer to vertebrate opsins, and offers the advantage of being a bi-stable photopigment. We inserted its coding sequence and a fluorescent protein reporter into plasmid vectors and demonstrated heterologous expression in various mammalian cell lines. HEK 293 cells were selected as a heterologous system for functional analysis, because wild type cells displayed the largest currents in response to the G-protein activator, GTP-γ-S. A line of HEK cells stably transfected with pScop2 was generated; after reconstitution of the photopigment with retinal, light responses were obtained in some cells, albeit of modest amplitude. In native photoreceptors pScop2 couples to G(o); HEK cells express poorly this G-protein, but have a prominent Gq/PLC pathway linked to internal Ca mobilization. To enhance pScop2 competence to tap into this pathway, we swapped its third intracellular loop—important to confer specificity of interaction between 7TMDRs and G-proteins—with that of a G(q)-linked opsin which we cloned from microvillar photoreceptors present in the same retina. The chimeric construct was evaluated by a Ca fluorescence assay, and was shown to mediate a robust mobilization of internal calcium in response to illumination. The results project pScop2 as a potentially powerful optogenetic tool to control signaling pathways. Public Library of Science 2018-10-01 /pmc/articles/PMC6166976/ /pubmed/30273391 http://dx.doi.org/10.1371/journal.pone.0205015 Text en © 2018 Osorno et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Osorno, Tomás Arenas, Oscar Ramírez-Suarez, Nelson J. Echeverry, Fabio A. Gomez, María del Pilar Nasi, Enrico Light control of G protein signaling pathways by a novel photopigment |
title | Light control of G protein signaling pathways by a novel photopigment |
title_full | Light control of G protein signaling pathways by a novel photopigment |
title_fullStr | Light control of G protein signaling pathways by a novel photopigment |
title_full_unstemmed | Light control of G protein signaling pathways by a novel photopigment |
title_short | Light control of G protein signaling pathways by a novel photopigment |
title_sort | light control of g protein signaling pathways by a novel photopigment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166976/ https://www.ncbi.nlm.nih.gov/pubmed/30273391 http://dx.doi.org/10.1371/journal.pone.0205015 |
work_keys_str_mv | AT osornotomas lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT arenasoscar lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT ramirezsuareznelsonj lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT echeverryfabioa lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT gomezmariadelpilar lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT nasienrico lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment |