Cargando…
LISA improves statistical analysis for fMRI
One of the principal goals in functional magnetic resonance imaging (fMRI) is the detection of local activation in the human brain. However, lack of statistical power and inflated false positive rates have recently been identified as major problems in this regard. Here, we propose a non-parametric a...
Autores principales: | Lohmann, Gabriele, Stelzer, Johannes, Lacosse, Eric, Kumar, Vinod J., Mueller, Karsten, Kuehn, Esther, Grodd, Wolfgang, Scheffler, Klaus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167367/ https://www.ncbi.nlm.nih.gov/pubmed/30275541 http://dx.doi.org/10.1038/s41467-018-06304-z |
Ejemplares similares
-
Jumping over baselines with new methods to predict activation maps from resting-state fMRI
por: Lacosse, Eric, et al.
Publicado: (2021) -
Brainglance: Visualizing Group Level MRI Data at One Glance
por: Stelzer, Johannes, et al.
Publicado: (2019) -
Task-Related Edge Density (TED)—A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain
por: Lohmann, Gabriele, et al.
Publicado: (2016) -
The functional architecture of S1 during touch observation described with 7 T fMRI
por: Kuehn, Esther, et al.
Publicado: (2013) -
Commentary: Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates
por: Mueller, Karsten, et al.
Publicado: (2017)