Cargando…

The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity

The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which w...

Descripción completa

Detalles Bibliográficos
Autores principales: Lalaurie, Christophe J., Dufour, Virginie, Meletiou, Anna, Ratcliffe, Sarah, Harland, Abigail, Wilson, Olivia, Vamasiri, Chiratchaya, Shoemark, Deborah K., Williams, Christopher, Arthur, Christopher J., Sessions, Richard B., Crump, Matthew P., Anderson, J. L. Ross, Curnow, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167376/
https://www.ncbi.nlm.nih.gov/pubmed/30275547
http://dx.doi.org/10.1038/s41598-018-31964-8
_version_ 1783360183341154304
author Lalaurie, Christophe J.
Dufour, Virginie
Meletiou, Anna
Ratcliffe, Sarah
Harland, Abigail
Wilson, Olivia
Vamasiri, Chiratchaya
Shoemark, Deborah K.
Williams, Christopher
Arthur, Christopher J.
Sessions, Richard B.
Crump, Matthew P.
Anderson, J. L. Ross
Curnow, Paul
author_facet Lalaurie, Christophe J.
Dufour, Virginie
Meletiou, Anna
Ratcliffe, Sarah
Harland, Abigail
Wilson, Olivia
Vamasiri, Chiratchaya
Shoemark, Deborah K.
Williams, Christopher
Arthur, Christopher J.
Sessions, Richard B.
Crump, Matthew P.
Anderson, J. L. Ross
Curnow, Paul
author_sort Lalaurie, Christophe J.
collection PubMed
description The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which we call REAMP for recombinantly expressed artificial membrane protein, is a single chain of 133 residues arranged into four antiparallel membrane-spanning α-helices. REAMP was overexpressed in Escherichia coli and localized to the cytoplasmic membrane with the intended transmembrane topology. Recombinant REAMP could be extracted from the cell membrane in detergent micelles and was robust and stable in vitro, containing helical secondary structure consistent with the original design. Engineered mono- and bis-histidine residues in the membrane domain of REAMP were able to coordinate heme in vitro, in a manner reminiscent of natural b-type cytochromes. This binding shifted the electrochemical potential of the cofactor, producing a synthetic hemoprotein capable of nascent redox catalysis. These results show that a highly reduced set of amino acids is sufficient to mimic some key properties of natural proteins, and that cellular biosynthesis is a viable route for the production of minimal de novo membrane sequences.
format Online
Article
Text
id pubmed-6167376
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61673762018-10-04 The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity Lalaurie, Christophe J. Dufour, Virginie Meletiou, Anna Ratcliffe, Sarah Harland, Abigail Wilson, Olivia Vamasiri, Chiratchaya Shoemark, Deborah K. Williams, Christopher Arthur, Christopher J. Sessions, Richard B. Crump, Matthew P. Anderson, J. L. Ross Curnow, Paul Sci Rep Article The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which we call REAMP for recombinantly expressed artificial membrane protein, is a single chain of 133 residues arranged into four antiparallel membrane-spanning α-helices. REAMP was overexpressed in Escherichia coli and localized to the cytoplasmic membrane with the intended transmembrane topology. Recombinant REAMP could be extracted from the cell membrane in detergent micelles and was robust and stable in vitro, containing helical secondary structure consistent with the original design. Engineered mono- and bis-histidine residues in the membrane domain of REAMP were able to coordinate heme in vitro, in a manner reminiscent of natural b-type cytochromes. This binding shifted the electrochemical potential of the cofactor, producing a synthetic hemoprotein capable of nascent redox catalysis. These results show that a highly reduced set of amino acids is sufficient to mimic some key properties of natural proteins, and that cellular biosynthesis is a viable route for the production of minimal de novo membrane sequences. Nature Publishing Group UK 2018-10-01 /pmc/articles/PMC6167376/ /pubmed/30275547 http://dx.doi.org/10.1038/s41598-018-31964-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Lalaurie, Christophe J.
Dufour, Virginie
Meletiou, Anna
Ratcliffe, Sarah
Harland, Abigail
Wilson, Olivia
Vamasiri, Chiratchaya
Shoemark, Deborah K.
Williams, Christopher
Arthur, Christopher J.
Sessions, Richard B.
Crump, Matthew P.
Anderson, J. L. Ross
Curnow, Paul
The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
title The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
title_full The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
title_fullStr The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
title_full_unstemmed The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
title_short The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
title_sort de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167376/
https://www.ncbi.nlm.nih.gov/pubmed/30275547
http://dx.doi.org/10.1038/s41598-018-31964-8
work_keys_str_mv AT lalauriechristophej thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT dufourvirginie thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT meletiouanna thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT ratcliffesarah thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT harlandabigail thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT wilsonolivia thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT vamasirichiratchaya thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT shoemarkdeborahk thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT williamschristopher thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT arthurchristopherj thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT sessionsrichardb thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT crumpmatthewp thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT andersonjlross thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT curnowpaul thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT lalauriechristophej denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT dufourvirginie denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT meletiouanna denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT ratcliffesarah denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT harlandabigail denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT wilsonolivia denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT vamasirichiratchaya denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT shoemarkdeborahk denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT williamschristopher denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT arthurchristopherj denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT sessionsrichardb denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT crumpmatthewp denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT andersonjlross denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity
AT curnowpaul denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity