Cargando…
The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity
The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which w...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167376/ https://www.ncbi.nlm.nih.gov/pubmed/30275547 http://dx.doi.org/10.1038/s41598-018-31964-8 |
_version_ | 1783360183341154304 |
---|---|
author | Lalaurie, Christophe J. Dufour, Virginie Meletiou, Anna Ratcliffe, Sarah Harland, Abigail Wilson, Olivia Vamasiri, Chiratchaya Shoemark, Deborah K. Williams, Christopher Arthur, Christopher J. Sessions, Richard B. Crump, Matthew P. Anderson, J. L. Ross Curnow, Paul |
author_facet | Lalaurie, Christophe J. Dufour, Virginie Meletiou, Anna Ratcliffe, Sarah Harland, Abigail Wilson, Olivia Vamasiri, Chiratchaya Shoemark, Deborah K. Williams, Christopher Arthur, Christopher J. Sessions, Richard B. Crump, Matthew P. Anderson, J. L. Ross Curnow, Paul |
author_sort | Lalaurie, Christophe J. |
collection | PubMed |
description | The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which we call REAMP for recombinantly expressed artificial membrane protein, is a single chain of 133 residues arranged into four antiparallel membrane-spanning α-helices. REAMP was overexpressed in Escherichia coli and localized to the cytoplasmic membrane with the intended transmembrane topology. Recombinant REAMP could be extracted from the cell membrane in detergent micelles and was robust and stable in vitro, containing helical secondary structure consistent with the original design. Engineered mono- and bis-histidine residues in the membrane domain of REAMP were able to coordinate heme in vitro, in a manner reminiscent of natural b-type cytochromes. This binding shifted the electrochemical potential of the cofactor, producing a synthetic hemoprotein capable of nascent redox catalysis. These results show that a highly reduced set of amino acids is sufficient to mimic some key properties of natural proteins, and that cellular biosynthesis is a viable route for the production of minimal de novo membrane sequences. |
format | Online Article Text |
id | pubmed-6167376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61673762018-10-04 The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity Lalaurie, Christophe J. Dufour, Virginie Meletiou, Anna Ratcliffe, Sarah Harland, Abigail Wilson, Olivia Vamasiri, Chiratchaya Shoemark, Deborah K. Williams, Christopher Arthur, Christopher J. Sessions, Richard B. Crump, Matthew P. Anderson, J. L. Ross Curnow, Paul Sci Rep Article The de novo design of integral membrane proteins remains a major challenge in protein chemistry. Here, we describe the bottom-up design of a genetically-encoded synthetic membrane protein comprising only four amino acids (L, S, G and W) in the transmembrane domains. This artificial sequence, which we call REAMP for recombinantly expressed artificial membrane protein, is a single chain of 133 residues arranged into four antiparallel membrane-spanning α-helices. REAMP was overexpressed in Escherichia coli and localized to the cytoplasmic membrane with the intended transmembrane topology. Recombinant REAMP could be extracted from the cell membrane in detergent micelles and was robust and stable in vitro, containing helical secondary structure consistent with the original design. Engineered mono- and bis-histidine residues in the membrane domain of REAMP were able to coordinate heme in vitro, in a manner reminiscent of natural b-type cytochromes. This binding shifted the electrochemical potential of the cofactor, producing a synthetic hemoprotein capable of nascent redox catalysis. These results show that a highly reduced set of amino acids is sufficient to mimic some key properties of natural proteins, and that cellular biosynthesis is a viable route for the production of minimal de novo membrane sequences. Nature Publishing Group UK 2018-10-01 /pmc/articles/PMC6167376/ /pubmed/30275547 http://dx.doi.org/10.1038/s41598-018-31964-8 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lalaurie, Christophe J. Dufour, Virginie Meletiou, Anna Ratcliffe, Sarah Harland, Abigail Wilson, Olivia Vamasiri, Chiratchaya Shoemark, Deborah K. Williams, Christopher Arthur, Christopher J. Sessions, Richard B. Crump, Matthew P. Anderson, J. L. Ross Curnow, Paul The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity |
title | The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity |
title_full | The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity |
title_fullStr | The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity |
title_full_unstemmed | The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity |
title_short | The de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity |
title_sort | de novo design of a biocompatible and functional integral membrane protein using minimal sequence complexity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167376/ https://www.ncbi.nlm.nih.gov/pubmed/30275547 http://dx.doi.org/10.1038/s41598-018-31964-8 |
work_keys_str_mv | AT lalauriechristophej thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT dufourvirginie thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT meletiouanna thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT ratcliffesarah thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT harlandabigail thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT wilsonolivia thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT vamasirichiratchaya thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT shoemarkdeborahk thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT williamschristopher thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT arthurchristopherj thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT sessionsrichardb thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT crumpmatthewp thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT andersonjlross thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT curnowpaul thedenovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT lalauriechristophej denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT dufourvirginie denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT meletiouanna denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT ratcliffesarah denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT harlandabigail denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT wilsonolivia denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT vamasirichiratchaya denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT shoemarkdeborahk denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT williamschristopher denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT arthurchristopherj denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT sessionsrichardb denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT crumpmatthewp denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT andersonjlross denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity AT curnowpaul denovodesignofabiocompatibleandfunctionalintegralmembraneproteinusingminimalsequencecomplexity |