Cargando…
Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas
Our understanding of the dynamics of ion collisional energy loss in a plasma is still not complete, in part due to the difficulty and lack of high-quality experimental measurements. These measurements are crucial to benchmark existing models. Here, we show that such a measurement is possible using h...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167377/ https://www.ncbi.nlm.nih.gov/pubmed/30275488 http://dx.doi.org/10.1038/s41598-018-32726-2 |
_version_ | 1783360183587569664 |
---|---|
author | Chen, S. N. Atzeni, S. Gangolf, T. Gauthier, M. Higginson, D. P. Hua, R. Kim, J. Mangia, F. McGuffey, C. Marquès, J.-R. Riquier, R. Pépin, H. Shepherd, R. Willi, O. Beg, F. N. Deutsch, C. Fuchs, J. |
author_facet | Chen, S. N. Atzeni, S. Gangolf, T. Gauthier, M. Higginson, D. P. Hua, R. Kim, J. Mangia, F. McGuffey, C. Marquès, J.-R. Riquier, R. Pépin, H. Shepherd, R. Willi, O. Beg, F. N. Deutsch, C. Fuchs, J. |
author_sort | Chen, S. N. |
collection | PubMed |
description | Our understanding of the dynamics of ion collisional energy loss in a plasma is still not complete, in part due to the difficulty and lack of high-quality experimental measurements. These measurements are crucial to benchmark existing models. Here, we show that such a measurement is possible using high-flux proton beams accelerated by high intensity short pulse lasers, where there is a high number of particles in a picosecond pulse, which is ideal for measurements in quickly expanding plasmas. By reducing the energy bandwidth of the protons using a passive selector, we have made proton stopping measurements in partially ionized Argon and fully ionized Hydrogen plasmas with electron temperatures of hundreds of eV and densities in the range 10(20)–10(21) cm(−3). In the first case, we have observed, consistently with previous reports, enhanced stopping of protons when compared to stopping power in non-ionized gas. In the second case, we have observed for the first time the regime of reduced stopping, which is theoretically predicted in such hot and fully ionized plasma. The versatility of these tunable short-pulse laser based ion sources, where the ion type and energy can be changed at will, could open up the possibility for a variety of ion stopping power measurements in plasmas so long as they are well characterized in terms of temperature and density. In turn, these measurements will allow tests of the validity of existing theoretical models. |
format | Online Article Text |
id | pubmed-6167377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61673772018-10-04 Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas Chen, S. N. Atzeni, S. Gangolf, T. Gauthier, M. Higginson, D. P. Hua, R. Kim, J. Mangia, F. McGuffey, C. Marquès, J.-R. Riquier, R. Pépin, H. Shepherd, R. Willi, O. Beg, F. N. Deutsch, C. Fuchs, J. Sci Rep Article Our understanding of the dynamics of ion collisional energy loss in a plasma is still not complete, in part due to the difficulty and lack of high-quality experimental measurements. These measurements are crucial to benchmark existing models. Here, we show that such a measurement is possible using high-flux proton beams accelerated by high intensity short pulse lasers, where there is a high number of particles in a picosecond pulse, which is ideal for measurements in quickly expanding plasmas. By reducing the energy bandwidth of the protons using a passive selector, we have made proton stopping measurements in partially ionized Argon and fully ionized Hydrogen plasmas with electron temperatures of hundreds of eV and densities in the range 10(20)–10(21) cm(−3). In the first case, we have observed, consistently with previous reports, enhanced stopping of protons when compared to stopping power in non-ionized gas. In the second case, we have observed for the first time the regime of reduced stopping, which is theoretically predicted in such hot and fully ionized plasma. The versatility of these tunable short-pulse laser based ion sources, where the ion type and energy can be changed at will, could open up the possibility for a variety of ion stopping power measurements in plasmas so long as they are well characterized in terms of temperature and density. In turn, these measurements will allow tests of the validity of existing theoretical models. Nature Publishing Group UK 2018-10-01 /pmc/articles/PMC6167377/ /pubmed/30275488 http://dx.doi.org/10.1038/s41598-018-32726-2 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Chen, S. N. Atzeni, S. Gangolf, T. Gauthier, M. Higginson, D. P. Hua, R. Kim, J. Mangia, F. McGuffey, C. Marquès, J.-R. Riquier, R. Pépin, H. Shepherd, R. Willi, O. Beg, F. N. Deutsch, C. Fuchs, J. Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas |
title | Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas |
title_full | Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas |
title_fullStr | Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas |
title_full_unstemmed | Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas |
title_short | Experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas |
title_sort | experimental evidence for the enhanced and reduced stopping regimes for protons propagating through hot plasmas |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167377/ https://www.ncbi.nlm.nih.gov/pubmed/30275488 http://dx.doi.org/10.1038/s41598-018-32726-2 |
work_keys_str_mv | AT chensn experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT atzenis experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT gangolft experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT gauthierm experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT higginsondp experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT huar experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT kimj experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT mangiaf experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT mcguffeyc experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT marquesjr experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT riquierr experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT pepinh experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT shepherdr experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT willio experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT begfn experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT deutschc experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas AT fuchsj experimentalevidencefortheenhancedandreducedstoppingregimesforprotonspropagatingthroughhotplasmas |