Cargando…
Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
As crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead s...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167381/ https://www.ncbi.nlm.nih.gov/pubmed/30275457 http://dx.doi.org/10.1038/s41467-018-06342-7 |
_version_ | 1783360184507170816 |
---|---|
author | Sun, Bin Ouellette, Olivier García de Arquer, F. Pelayo Voznyy, Oleksandr Kim, Younghoon Wei, Mingyang Proppe, Andrew H. Saidaminov, Makhsud I. Xu, Jixian Liu, Mengxia Li, Peicheng Fan, James Z. Jo, Jea Woong Tan, Hairen Tan, Furui Hoogland, Sjoerd Lu, Zheng Hong Kelley, Shana O. Sargent, Edward H. |
author_facet | Sun, Bin Ouellette, Olivier García de Arquer, F. Pelayo Voznyy, Oleksandr Kim, Younghoon Wei, Mingyang Proppe, Andrew H. Saidaminov, Makhsud I. Xu, Jixian Liu, Mengxia Li, Peicheng Fan, James Z. Jo, Jea Woong Tan, Hairen Tan, Furui Hoogland, Sjoerd Lu, Zheng Hong Kelley, Shana O. Sargent, Edward H. |
author_sort | Sun, Bin |
collection | PubMed |
description | As crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead sulfide colloidal quantum dot (CQD) ensembles to maximize short-circuit current and open-circuit voltage simultaneously. We engineer the density of states to achieve simultaneously a large quasi-Fermi level splitting and a tailored optical response that matches the infrared solar spectrum. We shape the density of states by selectively introducing larger-bandgap CQDs within a smaller-bandgap CQD population, achieving a 40 meV increase in open-circuit voltage. The near-unity internal quantum efficiency in the optimized multi-bandgap CQD ensemble yielded a maximized photocurrent of 3.7 ± 0.2 mA cm(−2). This provides a record for silicon-filtered power conversion efficiency equal to one power point, a 25% (relative) improvement compared to the best previously-reported results. |
format | Online Article Text |
id | pubmed-6167381 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61673812018-10-03 Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting Sun, Bin Ouellette, Olivier García de Arquer, F. Pelayo Voznyy, Oleksandr Kim, Younghoon Wei, Mingyang Proppe, Andrew H. Saidaminov, Makhsud I. Xu, Jixian Liu, Mengxia Li, Peicheng Fan, James Z. Jo, Jea Woong Tan, Hairen Tan, Furui Hoogland, Sjoerd Lu, Zheng Hong Kelley, Shana O. Sargent, Edward H. Nat Commun Article As crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead sulfide colloidal quantum dot (CQD) ensembles to maximize short-circuit current and open-circuit voltage simultaneously. We engineer the density of states to achieve simultaneously a large quasi-Fermi level splitting and a tailored optical response that matches the infrared solar spectrum. We shape the density of states by selectively introducing larger-bandgap CQDs within a smaller-bandgap CQD population, achieving a 40 meV increase in open-circuit voltage. The near-unity internal quantum efficiency in the optimized multi-bandgap CQD ensemble yielded a maximized photocurrent of 3.7 ± 0.2 mA cm(−2). This provides a record for silicon-filtered power conversion efficiency equal to one power point, a 25% (relative) improvement compared to the best previously-reported results. Nature Publishing Group UK 2018-10-01 /pmc/articles/PMC6167381/ /pubmed/30275457 http://dx.doi.org/10.1038/s41467-018-06342-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Sun, Bin Ouellette, Olivier García de Arquer, F. Pelayo Voznyy, Oleksandr Kim, Younghoon Wei, Mingyang Proppe, Andrew H. Saidaminov, Makhsud I. Xu, Jixian Liu, Mengxia Li, Peicheng Fan, James Z. Jo, Jea Woong Tan, Hairen Tan, Furui Hoogland, Sjoerd Lu, Zheng Hong Kelley, Shana O. Sargent, Edward H. Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting |
title | Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting |
title_full | Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting |
title_fullStr | Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting |
title_full_unstemmed | Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting |
title_short | Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting |
title_sort | multibandgap quantum dot ensembles for solar-matched infrared energy harvesting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167381/ https://www.ncbi.nlm.nih.gov/pubmed/30275457 http://dx.doi.org/10.1038/s41467-018-06342-7 |
work_keys_str_mv | AT sunbin multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT ouelletteolivier multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT garciadearquerfpelayo multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT voznyyoleksandr multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT kimyounghoon multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT weimingyang multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT proppeandrewh multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT saidaminovmakhsudi multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT xujixian multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT liumengxia multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT lipeicheng multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT fanjamesz multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT jojeawoong multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT tanhairen multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT tanfurui multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT hooglandsjoerd multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT luzhenghong multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT kelleyshanao multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting AT sargentedwardh multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting |