Cargando…

Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting

As crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead s...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Bin, Ouellette, Olivier, García de Arquer, F. Pelayo, Voznyy, Oleksandr, Kim, Younghoon, Wei, Mingyang, Proppe, Andrew H., Saidaminov, Makhsud I., Xu, Jixian, Liu, Mengxia, Li, Peicheng, Fan, James Z., Jo, Jea Woong, Tan, Hairen, Tan, Furui, Hoogland, Sjoerd, Lu, Zheng Hong, Kelley, Shana O., Sargent, Edward H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167381/
https://www.ncbi.nlm.nih.gov/pubmed/30275457
http://dx.doi.org/10.1038/s41467-018-06342-7
_version_ 1783360184507170816
author Sun, Bin
Ouellette, Olivier
García de Arquer, F. Pelayo
Voznyy, Oleksandr
Kim, Younghoon
Wei, Mingyang
Proppe, Andrew H.
Saidaminov, Makhsud I.
Xu, Jixian
Liu, Mengxia
Li, Peicheng
Fan, James Z.
Jo, Jea Woong
Tan, Hairen
Tan, Furui
Hoogland, Sjoerd
Lu, Zheng Hong
Kelley, Shana O.
Sargent, Edward H.
author_facet Sun, Bin
Ouellette, Olivier
García de Arquer, F. Pelayo
Voznyy, Oleksandr
Kim, Younghoon
Wei, Mingyang
Proppe, Andrew H.
Saidaminov, Makhsud I.
Xu, Jixian
Liu, Mengxia
Li, Peicheng
Fan, James Z.
Jo, Jea Woong
Tan, Hairen
Tan, Furui
Hoogland, Sjoerd
Lu, Zheng Hong
Kelley, Shana O.
Sargent, Edward H.
author_sort Sun, Bin
collection PubMed
description As crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead sulfide colloidal quantum dot (CQD) ensembles to maximize short-circuit current and open-circuit voltage simultaneously. We engineer the density of states to achieve simultaneously a large quasi-Fermi level splitting and a tailored optical response that matches the infrared solar spectrum. We shape the density of states by selectively introducing larger-bandgap CQDs within a smaller-bandgap CQD population, achieving a 40 meV increase in open-circuit voltage. The near-unity internal quantum efficiency in the optimized multi-bandgap CQD ensemble yielded a maximized photocurrent of 3.7 ± 0.2 mA cm(−2). This provides a record for silicon-filtered power conversion efficiency equal to one power point, a 25% (relative) improvement compared to the best previously-reported results.
format Online
Article
Text
id pubmed-6167381
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61673812018-10-03 Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting Sun, Bin Ouellette, Olivier García de Arquer, F. Pelayo Voznyy, Oleksandr Kim, Younghoon Wei, Mingyang Proppe, Andrew H. Saidaminov, Makhsud I. Xu, Jixian Liu, Mengxia Li, Peicheng Fan, James Z. Jo, Jea Woong Tan, Hairen Tan, Furui Hoogland, Sjoerd Lu, Zheng Hong Kelley, Shana O. Sargent, Edward H. Nat Commun Article As crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead sulfide colloidal quantum dot (CQD) ensembles to maximize short-circuit current and open-circuit voltage simultaneously. We engineer the density of states to achieve simultaneously a large quasi-Fermi level splitting and a tailored optical response that matches the infrared solar spectrum. We shape the density of states by selectively introducing larger-bandgap CQDs within a smaller-bandgap CQD population, achieving a 40 meV increase in open-circuit voltage. The near-unity internal quantum efficiency in the optimized multi-bandgap CQD ensemble yielded a maximized photocurrent of 3.7 ± 0.2 mA cm(−2). This provides a record for silicon-filtered power conversion efficiency equal to one power point, a 25% (relative) improvement compared to the best previously-reported results. Nature Publishing Group UK 2018-10-01 /pmc/articles/PMC6167381/ /pubmed/30275457 http://dx.doi.org/10.1038/s41467-018-06342-7 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Sun, Bin
Ouellette, Olivier
García de Arquer, F. Pelayo
Voznyy, Oleksandr
Kim, Younghoon
Wei, Mingyang
Proppe, Andrew H.
Saidaminov, Makhsud I.
Xu, Jixian
Liu, Mengxia
Li, Peicheng
Fan, James Z.
Jo, Jea Woong
Tan, Hairen
Tan, Furui
Hoogland, Sjoerd
Lu, Zheng Hong
Kelley, Shana O.
Sargent, Edward H.
Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
title Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
title_full Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
title_fullStr Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
title_full_unstemmed Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
title_short Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
title_sort multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167381/
https://www.ncbi.nlm.nih.gov/pubmed/30275457
http://dx.doi.org/10.1038/s41467-018-06342-7
work_keys_str_mv AT sunbin multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT ouelletteolivier multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT garciadearquerfpelayo multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT voznyyoleksandr multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT kimyounghoon multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT weimingyang multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT proppeandrewh multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT saidaminovmakhsudi multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT xujixian multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT liumengxia multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT lipeicheng multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT fanjamesz multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT jojeawoong multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT tanhairen multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT tanfurui multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT hooglandsjoerd multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT luzhenghong multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT kelleyshanao multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting
AT sargentedwardh multibandgapquantumdotensemblesforsolarmatchedinfraredenergyharvesting