Cargando…
Modulating Transcriptional Regulation of Plant Biomass Degrading Enzyme Networks for Rational Design of Industrial Fungal Strains
Filamentous fungi are the most important microorganisms for the industrial production of plant polysaccharide degrading enzymes due to their unique ability to secrete these proteins efficiently. These carbohydrate active enzymes (CAZymes) are utilized industrially for the hydrolysis of plant biomass...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167437/ https://www.ncbi.nlm.nih.gov/pubmed/30320082 http://dx.doi.org/10.3389/fbioe.2018.00133 |
Sumario: | Filamentous fungi are the most important microorganisms for the industrial production of plant polysaccharide degrading enzymes due to their unique ability to secrete these proteins efficiently. These carbohydrate active enzymes (CAZymes) are utilized industrially for the hydrolysis of plant biomass for the subsequent production of biofuels and high-value biochemicals. The expression of the genes encoding plant biomass degrading enzymes is tightly controlled. Naturally, large amounts of CAZymes are produced and secreted only in the presence of the plant polysaccharide they specifically act on. The signal to produce is conveyed via so-called inducer molecules which are di- or mono-saccharides (or derivatives thereof) released from the specific plant polysaccharides. The presence of the inducer results in the activation of a substrate-specific transcription factor (TF), which is required not only for the controlled expression of the genes encoding the CAZymes, but often also for the regulation of the expression of the genes encoding sugar transporters and catabolic pathway enzymes needed to utilize the released monosaccharide. Over the years, several substrate-specific TFs involved in the degradation of cellulose, hemicellulose, pectin, starch and inulin have been identified in several fungal species and systems biology approaches have made it possible to uncover the enzyme networks controlled by these TFs. The requirement for specific inducers for TF activation and subsequently the expression of particular enzyme networks determines the choice of feedstock to produce enzyme cocktails for industrial use. It also results in batch-to-batch variation in the composition and amounts of enzymes due to variations in sugar composition and polysaccharide decorations of the feedstock which hampers the use of cheap feedstocks for constant quality of enzyme cocktails. It is therefore of industrial interest to produce specific enzyme cocktails constitutively and independently of inducers. In this review, we focus on the methods to modulate TF activities for inducer-independent production of CAZymes and highlight various approaches that are used to construct strains displaying constitutive expression of plant biomass degrading enzyme networks. These approaches and combinations thereof are also used to construct strains displaying increased expression of CAZymes under inducing conditions, and make it possible to design strains in which different enzyme mixtures are simultaneously produced independently of the carbon source. |
---|