Cargando…
Open-Ended Learning: A Conceptual Framework Based on Representational Redescription
Reinforcement learning (RL) aims at building a policy that maximizes a task-related reward within a given domain. When the domain is known, i.e., when its states, actions and reward are defined, Markov Decision Processes (MDPs) provide a convenient theoretical framework to formalize RL. But in an op...
Autores principales: | Doncieux, Stephane, Filliat, David, Díaz-Rodríguez, Natalia, Hospedales, Timothy, Duro, Richard, Coninx, Alexandre, Roijers, Diederik M., Girard, Benoît, Perrin, Nicolas, Sigaud, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167466/ https://www.ncbi.nlm.nih.gov/pubmed/30319388 http://dx.doi.org/10.3389/fnbot.2018.00059 |
Ejemplares similares
-
Exploratory State Representation Learning
por: Merckling, Astrid, et al.
Publicado: (2022) -
Building an Affordances Map With Interactive Perception
por: Le Goff, Léni K., et al.
Publicado: (2022) -
Redescription mining
por: Galbrun, Esther, et al.
Publicado: (2018) -
Conceptual Framework to Support Clinical Trial Optimization and End-to-End Enrollment Workflow
por: Jain, Neha M., et al.
Publicado: (2019) -
TRANSITIONS OF FAMILY CAREGIVERS: A CONCEPTUAL FRAMEWORK FOR END-OF-LIFE CAREGIVING
por: Fox, Aimee, et al.
Publicado: (2019)