Cargando…

Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms

Background: Endovascular treatment (EVT) is effective for stroke patients with a large vessel occlusion (LVO) of the anterior circulation. To further improve personalized stroke care, it is essential to accurately predict outcome after EVT. Machine learning might outperform classical prediction meth...

Descripción completa

Detalles Bibliográficos
Autores principales: van Os, Hendrikus J. A., Ramos, Lucas A., Hilbert, Adam, van Leeuwen, Matthijs, van Walderveen, Marianne A. A., Kruyt, Nyika D., Dippel, Diederik W. J., Steyerberg, Ewout W., van der Schaaf, Irene C., Lingsma, Hester F., Schonewille, Wouter J., Majoie, Charles B. L. M., Olabarriaga, Silvia D., Zwinderman, Koos H., Venema, Esmee, Marquering, Henk A., Wermer, Marieke J. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167479/
https://www.ncbi.nlm.nih.gov/pubmed/30319525
http://dx.doi.org/10.3389/fneur.2018.00784
_version_ 1783360207149072384
author van Os, Hendrikus J. A.
Ramos, Lucas A.
Hilbert, Adam
van Leeuwen, Matthijs
van Walderveen, Marianne A. A.
Kruyt, Nyika D.
Dippel, Diederik W. J.
Steyerberg, Ewout W.
van der Schaaf, Irene C.
Lingsma, Hester F.
Schonewille, Wouter J.
Majoie, Charles B. L. M.
Olabarriaga, Silvia D.
Zwinderman, Koos H.
Venema, Esmee
Marquering, Henk A.
Wermer, Marieke J. H.
author_facet van Os, Hendrikus J. A.
Ramos, Lucas A.
Hilbert, Adam
van Leeuwen, Matthijs
van Walderveen, Marianne A. A.
Kruyt, Nyika D.
Dippel, Diederik W. J.
Steyerberg, Ewout W.
van der Schaaf, Irene C.
Lingsma, Hester F.
Schonewille, Wouter J.
Majoie, Charles B. L. M.
Olabarriaga, Silvia D.
Zwinderman, Koos H.
Venema, Esmee
Marquering, Henk A.
Wermer, Marieke J. H.
author_sort van Os, Hendrikus J. A.
collection PubMed
description Background: Endovascular treatment (EVT) is effective for stroke patients with a large vessel occlusion (LVO) of the anterior circulation. To further improve personalized stroke care, it is essential to accurately predict outcome after EVT. Machine learning might outperform classical prediction methods as it is capable of addressing complex interactions and non-linear relations between variables. Methods: We included patients from the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN) Registry, an observational cohort of LVO patients treated with EVT. We applied the following machine learning algorithms: Random Forests, Support Vector Machine, Neural Network, and Super Learner and compared their predictive value with classic logistic regression models using various variable selection methodologies. Outcome variables were good reperfusion (post-mTICI ≥ 2b) and functional independence (modified Rankin Scale ≤2) at 3 months using (1) only baseline variables and (2) baseline and treatment variables. Area under the ROC-curves (AUC) and difference of mean AUC between the models were assessed. Results: We included 1,383 EVT patients, with good reperfusion in 531 (38%) and functional independence in 525 (38%) patients. Machine learning and logistic regression models all performed poorly in predicting good reperfusion (range mean AUC: 0.53–0.57), and moderately in predicting 3-months functional independence (range mean AUC: 0.77–0.79) using only baseline variables. All models performed well in predicting 3-months functional independence using both baseline and treatment variables (range mean AUC: 0.88–0.91) with a negligible difference of mean AUC (0.01; 95%CI: 0.00–0.01) between best performing machine learning algorithm (Random Forests) and best performing logistic regression model (based on prior knowledge). Conclusion: In patients with LVO machine learning algorithms did not outperform logistic regression models in predicting reperfusion and 3-months functional independence after endovascular treatment. For all models at time of admission radiological outcome was more difficult to predict than clinical outcome.
format Online
Article
Text
id pubmed-6167479
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61674792018-10-12 Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms van Os, Hendrikus J. A. Ramos, Lucas A. Hilbert, Adam van Leeuwen, Matthijs van Walderveen, Marianne A. A. Kruyt, Nyika D. Dippel, Diederik W. J. Steyerberg, Ewout W. van der Schaaf, Irene C. Lingsma, Hester F. Schonewille, Wouter J. Majoie, Charles B. L. M. Olabarriaga, Silvia D. Zwinderman, Koos H. Venema, Esmee Marquering, Henk A. Wermer, Marieke J. H. Front Neurol Neurology Background: Endovascular treatment (EVT) is effective for stroke patients with a large vessel occlusion (LVO) of the anterior circulation. To further improve personalized stroke care, it is essential to accurately predict outcome after EVT. Machine learning might outperform classical prediction methods as it is capable of addressing complex interactions and non-linear relations between variables. Methods: We included patients from the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN) Registry, an observational cohort of LVO patients treated with EVT. We applied the following machine learning algorithms: Random Forests, Support Vector Machine, Neural Network, and Super Learner and compared their predictive value with classic logistic regression models using various variable selection methodologies. Outcome variables were good reperfusion (post-mTICI ≥ 2b) and functional independence (modified Rankin Scale ≤2) at 3 months using (1) only baseline variables and (2) baseline and treatment variables. Area under the ROC-curves (AUC) and difference of mean AUC between the models were assessed. Results: We included 1,383 EVT patients, with good reperfusion in 531 (38%) and functional independence in 525 (38%) patients. Machine learning and logistic regression models all performed poorly in predicting good reperfusion (range mean AUC: 0.53–0.57), and moderately in predicting 3-months functional independence (range mean AUC: 0.77–0.79) using only baseline variables. All models performed well in predicting 3-months functional independence using both baseline and treatment variables (range mean AUC: 0.88–0.91) with a negligible difference of mean AUC (0.01; 95%CI: 0.00–0.01) between best performing machine learning algorithm (Random Forests) and best performing logistic regression model (based on prior knowledge). Conclusion: In patients with LVO machine learning algorithms did not outperform logistic regression models in predicting reperfusion and 3-months functional independence after endovascular treatment. For all models at time of admission radiological outcome was more difficult to predict than clinical outcome. Frontiers Media S.A. 2018-09-25 /pmc/articles/PMC6167479/ /pubmed/30319525 http://dx.doi.org/10.3389/fneur.2018.00784 Text en Copyright © 2018 van Os, Ramos, Hilbert, van Leeuwen, van Walderveen, Kruyt, Dippel, Steyerberg, van der Schaaf, Lingsma, Schonewille, Majoie, Olabarriaga, Zwinderman, Venema, Marquering, Wermer and the MR CLEAN Registry Investigators. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neurology
van Os, Hendrikus J. A.
Ramos, Lucas A.
Hilbert, Adam
van Leeuwen, Matthijs
van Walderveen, Marianne A. A.
Kruyt, Nyika D.
Dippel, Diederik W. J.
Steyerberg, Ewout W.
van der Schaaf, Irene C.
Lingsma, Hester F.
Schonewille, Wouter J.
Majoie, Charles B. L. M.
Olabarriaga, Silvia D.
Zwinderman, Koos H.
Venema, Esmee
Marquering, Henk A.
Wermer, Marieke J. H.
Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms
title Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms
title_full Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms
title_fullStr Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms
title_full_unstemmed Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms
title_short Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms
title_sort predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms
topic Neurology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167479/
https://www.ncbi.nlm.nih.gov/pubmed/30319525
http://dx.doi.org/10.3389/fneur.2018.00784
work_keys_str_mv AT vanoshendrikusja predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT ramoslucasa predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT hilbertadam predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT vanleeuwenmatthijs predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT vanwalderveenmarianneaa predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT kruytnyikad predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT dippeldiederikwj predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT steyerbergewoutw predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT vanderschaafirenec predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT lingsmahesterf predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT schonewillewouterj predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT majoiecharlesblm predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT olabarriagasilviad predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT zwindermankoosh predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT venemaesmee predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT marqueringhenka predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT wermermariekejh predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms
AT predictingoutcomeofendovasculartreatmentforacuteischemicstrokepotentialvalueofmachinelearningalgorithms