Cargando…
Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus
BACKGROUND: The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are rec...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167834/ https://www.ncbi.nlm.nih.gov/pubmed/30285612 http://dx.doi.org/10.1186/s12864-018-5083-1 |
_version_ | 1783360269040222208 |
---|---|
author | Sánchez-Rangel, Diana Hernández-Domínguez, Eric-Edmundo Pérez-Torres, Claudia-Anahí Ortiz-Castro, Randy Villafán, Emanuel Rodríguez-Haas, Benjamín Alonso-Sánchez, Alexandro López-Buenfil, Abel Carrillo-Ortiz, Nayeli Hernández-Ramos, Lervin Ibarra-Laclette, Enrique |
author_facet | Sánchez-Rangel, Diana Hernández-Domínguez, Eric-Edmundo Pérez-Torres, Claudia-Anahí Ortiz-Castro, Randy Villafán, Emanuel Rodríguez-Haas, Benjamín Alonso-Sánchez, Alexandro López-Buenfil, Abel Carrillo-Ortiz, Nayeli Hernández-Ramos, Lervin Ibarra-Laclette, Enrique |
author_sort | Sánchez-Rangel, Diana |
collection | PubMed |
description | BACKGROUND: The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS: Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS: We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5083-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6167834 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61678342018-10-09 Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus Sánchez-Rangel, Diana Hernández-Domínguez, Eric-Edmundo Pérez-Torres, Claudia-Anahí Ortiz-Castro, Randy Villafán, Emanuel Rodríguez-Haas, Benjamín Alonso-Sánchez, Alexandro López-Buenfil, Abel Carrillo-Ortiz, Nayeli Hernández-Ramos, Lervin Ibarra-Laclette, Enrique BMC Genomics Research Article BACKGROUND: The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS: Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS: We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5083-1) contains supplementary material, which is available to authorized users. BioMed Central 2018-10-01 /pmc/articles/PMC6167834/ /pubmed/30285612 http://dx.doi.org/10.1186/s12864-018-5083-1 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Sánchez-Rangel, Diana Hernández-Domínguez, Eric-Edmundo Pérez-Torres, Claudia-Anahí Ortiz-Castro, Randy Villafán, Emanuel Rodríguez-Haas, Benjamín Alonso-Sánchez, Alexandro López-Buenfil, Abel Carrillo-Ortiz, Nayeli Hernández-Ramos, Lervin Ibarra-Laclette, Enrique Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus |
title | Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus |
title_full | Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus |
title_fullStr | Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus |
title_full_unstemmed | Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus |
title_short | Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus |
title_sort | environmental ph modulates transcriptomic responses in the fungus fusarium sp. associated with kshb euwallacea sp. near fornicatus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167834/ https://www.ncbi.nlm.nih.gov/pubmed/30285612 http://dx.doi.org/10.1186/s12864-018-5083-1 |
work_keys_str_mv | AT sanchezrangeldiana environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT hernandezdominguezericedmundo environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT pereztorresclaudiaanahi environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT ortizcastrorandy environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT villafanemanuel environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT rodriguezhaasbenjamin environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT alonsosanchezalexandro environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT lopezbuenfilabel environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT carrilloortiznayeli environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT hernandezramoslervin environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus AT ibarralacletteenrique environmentalphmodulatestranscriptomicresponsesinthefungusfusariumspassociatedwithkshbeuwallaceaspnearfornicatus |