Cargando…
Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes
PURPOSE: The number of people with type 2 diabetes (T2D) is growing rapidly worldwide. Islet β-cell dysfunction and failure are the main causes of T2D pathological processes. The aim of this study was to elucidate the underlying pathways and coexpression networks in T2D islets. MATERIALS AND METHODS...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167975/ https://www.ncbi.nlm.nih.gov/pubmed/30319280 http://dx.doi.org/10.2147/DMSO.S178894 |
_version_ | 1783360295811416064 |
---|---|
author | Li, Lu Pan, Zongfu Yang, Si Shan, Wenya Yang, Yanyan |
author_facet | Li, Lu Pan, Zongfu Yang, Si Shan, Wenya Yang, Yanyan |
author_sort | Li, Lu |
collection | PubMed |
description | PURPOSE: The number of people with type 2 diabetes (T2D) is growing rapidly worldwide. Islet β-cell dysfunction and failure are the main causes of T2D pathological processes. The aim of this study was to elucidate the underlying pathways and coexpression networks in T2D islets. MATERIALS AND METHODS: We analyzed the differentially expressed genes (DEGs) in the data set GSE41762, which contained 57 nondiabetic and 20 diabetic samples, and developed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein–protein interaction (PPI) network, the modules from the PPI network, and the gene annotation enrichment of modules were analyzed as well. Moreover, a weighted correlation network analysis (WGCNA) was applied to screen critical gene modules and coexpression networks and explore the biological significance. RESULTS: We filtered 957 DEGs in T2D islets. Then GO and KEGG analyses identified that key pathways like inflammatory response, type B pancreatic cell differentiation, and calcium ion-dependent exocytosis were involved in human T2D. Three significant modules were filtered from the PPI network. Ribosome biogenesis, extrinsic apoptotic signaling pathway, and membrane depolarization during action potential were associated with the modules, respectively. Furthermore, coexpression network analysis by WGCNA identified 13 distinct gene modules of T2D islets and revealed four modules, which were strongly correlated with T2D and T2D biomarker hemoglobin A1c (HbA1c). Functional annotation showed that these modules mainly enriched KEGG pathways such as NF-kappa B signaling pathway, tumor necrosis factor signaling pathway, cyclic adenosine monophosphate signaling pathway, and peroxisome proliferators-activated receptor signaling pathway. CONCLUSION: The results provide potential gene pathways and underlying molecular mechanisms for the prevention, diagnosis, and treatment of T2D. |
format | Online Article Text |
id | pubmed-6167975 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-61679752018-10-12 Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes Li, Lu Pan, Zongfu Yang, Si Shan, Wenya Yang, Yanyan Diabetes Metab Syndr Obes Original Research PURPOSE: The number of people with type 2 diabetes (T2D) is growing rapidly worldwide. Islet β-cell dysfunction and failure are the main causes of T2D pathological processes. The aim of this study was to elucidate the underlying pathways and coexpression networks in T2D islets. MATERIALS AND METHODS: We analyzed the differentially expressed genes (DEGs) in the data set GSE41762, which contained 57 nondiabetic and 20 diabetic samples, and developed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Protein–protein interaction (PPI) network, the modules from the PPI network, and the gene annotation enrichment of modules were analyzed as well. Moreover, a weighted correlation network analysis (WGCNA) was applied to screen critical gene modules and coexpression networks and explore the biological significance. RESULTS: We filtered 957 DEGs in T2D islets. Then GO and KEGG analyses identified that key pathways like inflammatory response, type B pancreatic cell differentiation, and calcium ion-dependent exocytosis were involved in human T2D. Three significant modules were filtered from the PPI network. Ribosome biogenesis, extrinsic apoptotic signaling pathway, and membrane depolarization during action potential were associated with the modules, respectively. Furthermore, coexpression network analysis by WGCNA identified 13 distinct gene modules of T2D islets and revealed four modules, which were strongly correlated with T2D and T2D biomarker hemoglobin A1c (HbA1c). Functional annotation showed that these modules mainly enriched KEGG pathways such as NF-kappa B signaling pathway, tumor necrosis factor signaling pathway, cyclic adenosine monophosphate signaling pathway, and peroxisome proliferators-activated receptor signaling pathway. CONCLUSION: The results provide potential gene pathways and underlying molecular mechanisms for the prevention, diagnosis, and treatment of T2D. Dove Medical Press 2018-09-28 /pmc/articles/PMC6167975/ /pubmed/30319280 http://dx.doi.org/10.2147/DMSO.S178894 Text en © 2018 Li et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Li, Lu Pan, Zongfu Yang, Si Shan, Wenya Yang, Yanyan Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes |
title | Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes |
title_full | Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes |
title_fullStr | Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes |
title_full_unstemmed | Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes |
title_short | Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes |
title_sort | identification of key gene pathways and coexpression networks of islets in human type 2 diabetes |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167975/ https://www.ncbi.nlm.nih.gov/pubmed/30319280 http://dx.doi.org/10.2147/DMSO.S178894 |
work_keys_str_mv | AT lilu identificationofkeygenepathwaysandcoexpressionnetworksofisletsinhumantype2diabetes AT panzongfu identificationofkeygenepathwaysandcoexpressionnetworksofisletsinhumantype2diabetes AT yangsi identificationofkeygenepathwaysandcoexpressionnetworksofisletsinhumantype2diabetes AT shanwenya identificationofkeygenepathwaysandcoexpressionnetworksofisletsinhumantype2diabetes AT yangyanyan identificationofkeygenepathwaysandcoexpressionnetworksofisletsinhumantype2diabetes |