Cargando…
Optimal clustering under uncertainty
Classical clustering algorithms typically either lack an underlying probability framework to make them predictive or focus on parameter estimation rather than defining and minimizing a notion of error. Recent work addresses these issues by developing a probabilistic framework based on the theory of...
Autores principales: | Dalton, Lori A., Benalcázar, Marco E., Dougherty, Edward R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168142/ https://www.ncbi.nlm.nih.gov/pubmed/30278063 http://dx.doi.org/10.1371/journal.pone.0204627 |
Ejemplares similares
-
Optimal cancer prognosis under network uncertainty
por: Yousefi, Mohammadmahdi R, et al.
Publicado: (2015) -
Optimal signal processing under uncertainty
por: Dougherty, Edward R
Publicado: (2018) -
Scalable optimal Bayesian classification of single-cell trajectories under regulatory model uncertainty
por: Hajiramezanali, Ehsan, et al.
Publicado: (2019) -
Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery
por: Qian, Xiaoning, et al.
Publicado: (2023) -
A comparison study of optimal and suboptimal intervention policies for gene regulatory networks in the presence of uncertainty
por: Yousefi, Mohammadmahdi R, et al.
Publicado: (2014)