Cargando…
Correction: Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial
Autores principales: | Peikert, Tobias, Duan, Fenghai, Rajagopalan, Srinivasan, Karwoski, Ronald A., Clay, Ryan, Robb, Richard A., Qin, Ziling, Sicks, JoRean, Bartholmai, Brian J., Maldonado, Fabien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168172/ https://www.ncbi.nlm.nih.gov/pubmed/30278080 http://dx.doi.org/10.1371/journal.pone.0205311 |
Ejemplares similares
-
Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial
por: Peikert, Tobias, et al.
Publicado: (2018) -
Do we need to see to believe?—radiomics for lung nodule classification and lung cancer risk stratification
por: Khawaja, Ali, et al.
Publicado: (2020) -
Radiomics-based Management of Indeterminate Lung Nodules? Are We
There Yet?
por: Peikert, Tobias, et al.
Publicado: (2020) -
Computer-Aided Nodule Assessment and Risk Yield (CANARY) may facilitate non-invasive prediction of EGFR mutation status in lung adenocarcinomas
por: Clay, Ryan, et al.
Publicado: (2017) -
Quantitative Stratification of Diffuse Parenchymal Lung Diseases
por: Raghunath, Sushravya, et al.
Publicado: (2014)