Cargando…

Metal oxide modified ZnO nanomaterials for biosensor applications

Advancing as a biosensing nanotechnology, nanohybrids present a new class of functional materials with high selectivity and sensitivity, enabling integration of nanoscale chemical/biological interactions with biomedical devices. The unique properties of ZnO combined with metal oxide nanostructures w...

Descripción completa

Detalles Bibliográficos
Autores principales: Tripathy, Nirmalya, Kim, Deok-Ho
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168443/
https://www.ncbi.nlm.nih.gov/pubmed/30467757
http://dx.doi.org/10.1186/s40580-018-0159-9
Descripción
Sumario:Advancing as a biosensing nanotechnology, nanohybrids present a new class of functional materials with high selectivity and sensitivity, enabling integration of nanoscale chemical/biological interactions with biomedical devices. The unique properties of ZnO combined with metal oxide nanostructures were recently demonstrated to be an efficient approach for sensor device fabrication with accurate, real-time and high-throughput biosensing, creating new avenues for diagnosis, disease management and therapeutics. This review article collates recent advances in the modified ZnO nanostructured metal oxide nanohybrids for efficient enzymatic and non-enzymatic biosensor applications. Furthermore, we also discussed future prospects for nanohybrid materials to yield high-performance biosensor devices.