Cargando…
Solar simulated light exposure alters metabolization and genotoxicity induced by benzo[a]pyrene in human skin
Skin is a major barrier against external insults and is exposed to combinations of chemical and/or physical toxic agents. Co-exposure to the carcinogenic benzo[a]pyrene (B[a]P) and solar UV radiation is highly relevant in human health, especially in occupational safety. In vitro studies have suggest...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168490/ https://www.ncbi.nlm.nih.gov/pubmed/30279536 http://dx.doi.org/10.1038/s41598-018-33031-8 |
Sumario: | Skin is a major barrier against external insults and is exposed to combinations of chemical and/or physical toxic agents. Co-exposure to the carcinogenic benzo[a]pyrene (B[a]P) and solar UV radiation is highly relevant in human health, especially in occupational safety. In vitro studies have suggested that UVB enhances B[a]P genotoxicity by activating the AhR pathway and overexpressing the cytochrome P450 enzymes responsible for the conversion of B[a]P into DNA damaging metabolites. Our present work involved more realistic conditions, namely ex vivo human skin explants and simulated sunlight (SSL) as a UV source. We found that topically applied B[a]P strongly induced expression of cutaneous cytochrome P450 genes and formation of DNA adducts. However, gene induction was significantly reduced when B[a]P was combined with SSL. Consequently, formation of BPDE-adducts was also reduced when B[a]P was associated with SSL. Similar results were obtained with primary cultures of human keratinocytes. These results indicate that UV significantly impairs B[a]P metabolism, and decreases rather than increases immediate toxicity. However, it cannot be ruled out that decreased metabolism leads to accumulation of B[a]P and delayed genotoxicity. |
---|