Cargando…
A magnetically recyclable photocatalyst with commendable dye degradation activity at ambient conditions
An efficient, economical, environment-friendly and easy separable catalyst to treat environmental contaminants is an enduring attention in recent years due to their great potential for environmental protection and remediation. Here we have reported the excellent performance of polyaniline activated...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168602/ https://www.ncbi.nlm.nih.gov/pubmed/30279537 http://dx.doi.org/10.1038/s41598-018-32911-3 |
Sumario: | An efficient, economical, environment-friendly and easy separable catalyst to treat environmental contaminants is an enduring attention in recent years due to their great potential for environmental protection and remediation. Here we have reported the excellent performance of polyaniline activated heterojunctured Ni(0.5)Zn(0.5)Fe(2)O(4) catalyst to degrade azo dye in an aqueous solution at ambient condition. The catalyst was prepared via a simple facile polymerization procedure. The physicochemical properties and structure of the synthesized catalyst was confirmed by TGA, PXRD, FTIR, SEM, HRTEM, XPS, EDX, and DRS techniques. The developed catalyst has shown an accelerated degradation ability of an organic pollutant Orange ll Sodium salt azo dye about 100% for the dye concentration of 50 ppm within five minutes at ambient conditions with 1 g/l loading of catalyst. Simple facile synthesis, easy separation by an external magnet, good reusability and high degradation capability of the catalyst may promote the practical applications of the heterostructured catalyst at ambient condition for water remediation. The present study also explored possible credible charge transfer directions and mechanism of photocatalysis supported by trapping experiments and electrochemical impedance spectroscopy (EIS) measurement for the effective improvement of photocatalytic activity and enhancement of the visible light adsorption. |
---|