Cargando…

PRDM14 is overexpressed in chronic pancreatitis prior to pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer that is typically diagnosed at a later stage with metastases and is difficult to treat. Therefore, investigating the mechanism of PDAC initiation is important to aid early‐stage cancer detection. PRDM14 is a transcription fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Moriya, Chiharu, Imai, Kohzoh, Taniguchi, Hiroaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168686/
https://www.ncbi.nlm.nih.gov/pubmed/30338223
http://dx.doi.org/10.1002/2211-5463.12519
Descripción
Sumario:Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer that is typically diagnosed at a later stage with metastases and is difficult to treat. Therefore, investigating the mechanism of PDAC initiation is important to aid early‐stage cancer detection. PRDM14 is a transcription factor that maintains pluripotency in embryonic stem cells and is overexpressed in several cancers. We previously reported that PRDM14 is overexpressed and regulates cancer stem‐like phenotypes in PDAC, and herein, we assess whether PRDM14 expression increases prior to tumorigenesis. Through immunohistochemistry analyses of clinical tissues, we detected PRDM14‐positive cells in precursor pancreatic intraepithelial neoplasia and chronic pancreatitis, which is a risk factor for PDAC, lesions. PRDM14 staining in chronic pancreatitis was as high as that in PDAC and cancer adjacent tissues. We induced pancreatitis in mouse models by cerulein injection, and observed that PRDM14 expression increased in chronic pancreatitis models but not in control or acute pancreatitis mice. Moreover, cerulein treatment increased PRDM14 expression in PK‐1 and AsPC‐1 pancreatic cancer cell lines. Our results suggest that inflammation increases the expression of PRDM14, which regulates cancer stem‐like phenotypes, and this occurs prior to PDAC initiation and progression.