Cargando…
Oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from Escherichia coli inclusion bodies
Native α1‐antitrypsin (AAT) is a 52‐kDa glycoprotein that acts as an antiprotease and is the physiological inhibitor of neutrophil serine proteases. The main function of AAT is to protect the lung from proteolytic damage induced by inflammation. AAT deficiency (AATD) is a codominant autosomal disord...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168689/ https://www.ncbi.nlm.nih.gov/pubmed/30338221 http://dx.doi.org/10.1002/2211-5463.12515 |
_version_ | 1783360404956643328 |
---|---|
author | Zhu, Wei Li, Lanfen Deng, Mingjing Wang, Bo Li, Mengfei Ding, Guofang Yang, Zuisu Medynski, Dan Lin, Xiaotao Ouyang, Ying Lin, Jirui Li, Luyuan Lin, Xinli |
author_facet | Zhu, Wei Li, Lanfen Deng, Mingjing Wang, Bo Li, Mengfei Ding, Guofang Yang, Zuisu Medynski, Dan Lin, Xiaotao Ouyang, Ying Lin, Jirui Li, Luyuan Lin, Xinli |
author_sort | Zhu, Wei |
collection | PubMed |
description | Native α1‐antitrypsin (AAT) is a 52‐kDa glycoprotein that acts as an antiprotease and is the physiological inhibitor of neutrophil serine proteases. The main function of AAT is to protect the lung from proteolytic damage induced by inflammation. AAT deficiency (AATD) is a codominant autosomal disorder caused by pathogenic mutations in SERPINA1 gene, leading to reduced levels of serum AAT. The deficiency is known to increase the risk of pulmonary emphysema and chronic obstructive pulmonary disease as a consequence of proteolytic imbalance induced by inflammation, associated in many instances with cigarette smoking and other environmental hazards. Currently, the available therapy for lung disease associated with AATD is serum purified human AAT injected into patients on a weekly basis. It would be advantageous to replace serum‐derived AAT with a recombinant version which is stable and resistant to oxidation. We have expressed AAT in Escherichia coli as inclusion bodies and developed a highly efficient refolding and purification process. We engineered a series of mutant forms of AAT to achieve enhance thermostability and oxidation resistance. Moreover, we synthesized an active form of AAT via cysteine‐pegylation to achieve a markedly extended half‐life in vivo. The resulting molecule, which retains comparable activity to the wild‐type form, is expected to be an improved therapeutic agent for treating hereditary emphysema. In addition, the molecule may also be used to treat other types of emphysema caused by smoking, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and chronic obstructive pulmonary disease. |
format | Online Article Text |
id | pubmed-6168689 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61686892018-10-18 Oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from Escherichia coli inclusion bodies Zhu, Wei Li, Lanfen Deng, Mingjing Wang, Bo Li, Mengfei Ding, Guofang Yang, Zuisu Medynski, Dan Lin, Xiaotao Ouyang, Ying Lin, Jirui Li, Luyuan Lin, Xinli FEBS Open Bio Research Articles Native α1‐antitrypsin (AAT) is a 52‐kDa glycoprotein that acts as an antiprotease and is the physiological inhibitor of neutrophil serine proteases. The main function of AAT is to protect the lung from proteolytic damage induced by inflammation. AAT deficiency (AATD) is a codominant autosomal disorder caused by pathogenic mutations in SERPINA1 gene, leading to reduced levels of serum AAT. The deficiency is known to increase the risk of pulmonary emphysema and chronic obstructive pulmonary disease as a consequence of proteolytic imbalance induced by inflammation, associated in many instances with cigarette smoking and other environmental hazards. Currently, the available therapy for lung disease associated with AATD is serum purified human AAT injected into patients on a weekly basis. It would be advantageous to replace serum‐derived AAT with a recombinant version which is stable and resistant to oxidation. We have expressed AAT in Escherichia coli as inclusion bodies and developed a highly efficient refolding and purification process. We engineered a series of mutant forms of AAT to achieve enhance thermostability and oxidation resistance. Moreover, we synthesized an active form of AAT via cysteine‐pegylation to achieve a markedly extended half‐life in vivo. The resulting molecule, which retains comparable activity to the wild‐type form, is expected to be an improved therapeutic agent for treating hereditary emphysema. In addition, the molecule may also be used to treat other types of emphysema caused by smoking, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and chronic obstructive pulmonary disease. John Wiley and Sons Inc. 2018-09-17 /pmc/articles/PMC6168689/ /pubmed/30338221 http://dx.doi.org/10.1002/2211-5463.12515 Text en © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zhu, Wei Li, Lanfen Deng, Mingjing Wang, Bo Li, Mengfei Ding, Guofang Yang, Zuisu Medynski, Dan Lin, Xiaotao Ouyang, Ying Lin, Jirui Li, Luyuan Lin, Xinli Oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from Escherichia coli inclusion bodies |
title | Oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from Escherichia coli inclusion bodies |
title_full | Oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from Escherichia coli inclusion bodies |
title_fullStr | Oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from Escherichia coli inclusion bodies |
title_full_unstemmed | Oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from Escherichia coli inclusion bodies |
title_short | Oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from Escherichia coli inclusion bodies |
title_sort | oxidation‐resistant and thermostable forms of alpha‐1 antitrypsin from escherichia coli inclusion bodies |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168689/ https://www.ncbi.nlm.nih.gov/pubmed/30338221 http://dx.doi.org/10.1002/2211-5463.12515 |
work_keys_str_mv | AT zhuwei oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT lilanfen oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT dengmingjing oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT wangbo oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT limengfei oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT dingguofang oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT yangzuisu oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT medynskidan oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT linxiaotao oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT ouyangying oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT linjirui oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT liluyuan oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies AT linxinli oxidationresistantandthermostableformsofalpha1antitrypsinfromescherichiacoliinclusionbodies |