Cargando…
Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology
The molecular mechanisms that underlie drought stress responses in kenaf, an important crop for the production of natural fibers, are poorly understood. To address this issue, we describe here the first iTRAQ‐based comparative proteomic analysis of kenaf seedlings. Plants were divided into the follo...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168693/ https://www.ncbi.nlm.nih.gov/pubmed/30338209 http://dx.doi.org/10.1002/2211-5463.12507 |
_version_ | 1783360405930770432 |
---|---|
author | An, Xia Jin, Guanrong Zhang, Jingyu Luo, Xiahong Chen, Changli Li, Wenlue Ma, GuangYing Jin, Liang Dai, Lunjin Shi, Xiaohua Wei, Wei Zhu, Guanlin |
author_facet | An, Xia Jin, Guanrong Zhang, Jingyu Luo, Xiahong Chen, Changli Li, Wenlue Ma, GuangYing Jin, Liang Dai, Lunjin Shi, Xiaohua Wei, Wei Zhu, Guanlin |
author_sort | An, Xia |
collection | PubMed |
description | The molecular mechanisms that underlie drought stress responses in kenaf, an important crop for the production of natural fibers, are poorly understood. To address this issue, we describe here the first iTRAQ‐based comparative proteomic analysis of kenaf seedlings. Plants were divided into the following three treatment groups: Group A, watered normally (control); Group B, not watered for 6 days (drought treatment); and Group C, not watered for 5 days and then rewatered for 1 day (recovery treatment). A total of 5014 proteins were detected, including 4932 (i.e., 98.36%) that were matched to known proteins in a BLAST search. We detected 218, 107, and 348 proteins that were upregulated in Group B compared with Group A, Group C compared with Group A, and Group B compared with Group C, respectively. Additionally, 306, 145, and 231 downregulated proteins were detected during the same comparisons. Seventy differentially expressed proteins were analyzed and classified into 10 categories: photosynthesis, sulfur metabolism, amino sugar and nucleotide sugar metabolism, oxidative phosphorylation, ribosome, fatty acid elongation, thiamine metabolism, tryptophan metabolism, plant–pathogen interaction, and propanoate. Kenaf adapted to stress mainly by improving the metabolism of ATP, regulating photosynthesis according to light intensity, promoting the synthesis of osmoregulators, strengthening ion transport signal transmission, and promoting metabolism and cell stability. This is the first study to examine changes in protein expression in kenaf plants exposed to drought stress. Our results identified key drought‐responsive genes and proteins and may provide useful genetic information for improving kenaf stress resistance. |
format | Online Article Text |
id | pubmed-6168693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61686932018-10-18 Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology An, Xia Jin, Guanrong Zhang, Jingyu Luo, Xiahong Chen, Changli Li, Wenlue Ma, GuangYing Jin, Liang Dai, Lunjin Shi, Xiaohua Wei, Wei Zhu, Guanlin FEBS Open Bio Research Articles The molecular mechanisms that underlie drought stress responses in kenaf, an important crop for the production of natural fibers, are poorly understood. To address this issue, we describe here the first iTRAQ‐based comparative proteomic analysis of kenaf seedlings. Plants were divided into the following three treatment groups: Group A, watered normally (control); Group B, not watered for 6 days (drought treatment); and Group C, not watered for 5 days and then rewatered for 1 day (recovery treatment). A total of 5014 proteins were detected, including 4932 (i.e., 98.36%) that were matched to known proteins in a BLAST search. We detected 218, 107, and 348 proteins that were upregulated in Group B compared with Group A, Group C compared with Group A, and Group B compared with Group C, respectively. Additionally, 306, 145, and 231 downregulated proteins were detected during the same comparisons. Seventy differentially expressed proteins were analyzed and classified into 10 categories: photosynthesis, sulfur metabolism, amino sugar and nucleotide sugar metabolism, oxidative phosphorylation, ribosome, fatty acid elongation, thiamine metabolism, tryptophan metabolism, plant–pathogen interaction, and propanoate. Kenaf adapted to stress mainly by improving the metabolism of ATP, regulating photosynthesis according to light intensity, promoting the synthesis of osmoregulators, strengthening ion transport signal transmission, and promoting metabolism and cell stability. This is the first study to examine changes in protein expression in kenaf plants exposed to drought stress. Our results identified key drought‐responsive genes and proteins and may provide useful genetic information for improving kenaf stress resistance. John Wiley and Sons Inc. 2018-09-05 /pmc/articles/PMC6168693/ /pubmed/30338209 http://dx.doi.org/10.1002/2211-5463.12507 Text en © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles An, Xia Jin, Guanrong Zhang, Jingyu Luo, Xiahong Chen, Changli Li, Wenlue Ma, GuangYing Jin, Liang Dai, Lunjin Shi, Xiaohua Wei, Wei Zhu, Guanlin Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology |
title | Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology |
title_full | Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology |
title_fullStr | Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology |
title_full_unstemmed | Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology |
title_short | Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology |
title_sort | protein responses in kenaf plants exposed to drought conditions determined using itraq technology |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168693/ https://www.ncbi.nlm.nih.gov/pubmed/30338209 http://dx.doi.org/10.1002/2211-5463.12507 |
work_keys_str_mv | AT anxia proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT jinguanrong proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT zhangjingyu proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT luoxiahong proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT chenchangli proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT liwenlue proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT maguangying proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT jinliang proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT dailunjin proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT shixiaohua proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT weiwei proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology AT zhuguanlin proteinresponsesinkenafplantsexposedtodroughtconditionsdeterminedusingitraqtechnology |