Cargando…
Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems
BACKGROUND: Charcoal rot is a fungal disease that thrives in warm dry conditions and affects the yield of soybeans and other important agronomic crops worldwide. There is a need for robust, automatic and consistent early detection and quantification of disease symptoms which are important in breedin...
Autores principales: | Nagasubramanian, Koushik, Jones, Sarah, Sarkar, Soumik, Singh, Asheesh K., Singh, Arti, Ganapathysubramanian, Baskar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169113/ https://www.ncbi.nlm.nih.gov/pubmed/30305840 http://dx.doi.org/10.1186/s13007-018-0349-9 |
Ejemplares similares
-
Plant disease identification using explainable 3D deep learning on hyperspectral images
por: Nagasubramanian, Koushik, et al.
Publicado: (2019) -
Development of Optimized Phenomic Predictors for Efficient Plant Breeding Decisions Using Phenomic-Assisted Selection in Soybean
por: Parmley, Kyle, et al.
Publicado: (2019) -
Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP)
por: Jubery, Talukder Zaki, et al.
Publicado: (2021) -
Computer vision and machine learning enabled soybean root phenotyping pipeline
por: Falk, Kevin G., et al.
Publicado: (2020) -
An explainable deep machine vision framework for plant stress phenotyping
por: Ghosal, Sambuddha, et al.
Publicado: (2018)